March 22, 2007
I briefly review the theoretical models of radiatively efficient, geometrically thin and optically thick accretion disk spectra that currently exist for AGN. I then discuss three recent observational developments that have real potential to teach us about the physics of these flows. Finally, I present results on the most recent, thermodynamically consistent simulations of magnetorotational turbulence and discuss what these simulations are suggesting about the vertical structure of accretion disks.
Similar papers 1
February 15, 2023
I present the elements of accretion-disc physics applied to active galactic nuclei. The accretion driving mechanisms are discussed, then models of geometrically-thin discs, both stationary and time-dependent, are addressed. Disc's self-gravitation in the AGN context is presented. The shapes of spectral line from accretion discs are explained in both newtonian and relativistic cases. The physics of disc's thermal and viscous instabilities is dicussed in detail and models are a...
October 7, 2010
We studied a steadily accreting, geometrically thick disk model that selfconsistently takes into account selfgravitation of the polytropic gas, its interaction with the radiation and the mass accretion rate. The accreting mass is injected inward in the vicinity of the central $z=0$ plane, where also radiation is assumed to be created. The rest of the disk remains approximately stationary. Only conservation laws are employed and the gas-radiation interaction in the bulk of the...
September 10, 2004
Optically thick accretion disks are considered to be important ingredients of luminous AGN. The claim of their existence is well supported by observations and recent years brought some progress in understanding of their dynamics. However, the role of accretion disks in optical/UV/X-ray variability of AGN is not quite clear. Most probably, in short timescales the disk reprocesses the variable X-ray flux but at longer timescales the variations of the disk structure lead directl...
May 10, 2004
Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining t...
October 9, 2006
We argue that the X-ray and UV flux illuminating the parsec-scale accretion disk around luminous active galactic nuclei (AGN) is super-Eddington with respect to the local far-infrared dust opacity. The far infrared opacity may be larger than in the interstellar medium of the Milky Way due to a combination of supersolar metallicity and the growth of dust grains in the dense accretion disk. Because of the irradiating flux, the outer accretion disk puffs up with a vertical thick...
July 6, 2005
Although blazar variability is probably dominated by emission from relativistic jets, accretion disks should be present in all blazars. These disks produce emission over most of the electromagnetic spectrum; various unstable processes operate in those disks which lead to variable emission. Here I summarize some of the most relevant disk mechanisms for AGN variability. I also discuss some aspects of jet variability, focusing on the possibility that ultrarelativisitic jets of m...
August 24, 2005
The galactic black hole binary systems give an observational template showing how the accretion flow changes as a function of increasing mass accretion rate, or L/L_Edd. These data can be synthetised with theoretical models of the accretion flow to give a coherent picture of accretion in strong gravity, in which the major hard-soft spectral transition is triggered by a change in the nature and geometry of the inner accretion flow from a hot, optically thin plasma to a cool, o...
August 23, 2000
We consider the combined role of the thermal ionization, magneto-rotational and gravitational instabilities in thin accretion disks around supermassive black holes. We find that in the portions of the disk unstable to the ionization instability, the gas remains well coupled to the magnetic field even on the cold, neutral branch of the thermal limit cycle. This suggests that the ionization instability is not a significant source of large amplitude time-dependent accretion in A...
September 7, 1995
We reexamine the hypothesis that the optical/UV/soft X-ray continuum of Active Galactic Nuclei is thermal emission from an accretion disk. Previous studies have shown that fitting the spectra with the standard, optically thick and geometrically thin accretion disk models often led to luminosities which contradict the basic assumptions adopted in the standard model. There is no known reason why the accretion rates in AGN should not be larger than the thin disk limit. In fact, ...
April 28, 2005
I summarize the main observational properties of low-luminosity AGNs in nearby galaxies to argue that they are the high-mass analogs of black hole X-ray binaries in the "low/hard" state. The principal characteristics of low-state AGNs can be accommodated with a scenario in which the central engine is comprised of three components: an optically thick, geometrically accretion disk with a truncated inner radius, a radiatively inefficient flow, and a compact jet.