November 16, 1994
Similar papers 5
April 10, 2007
In the past decade high resolution measurements in the infrared employing adaptive optics imaging on 10m telescopes have allowed determining the three dimensional orbits stars within ten light hours of the compact radio source at the center of the Milky Way. These observations show the presence of a three million solar mass black hole in Sagittarius A* beyond any reasonable doubt. The Galactic Center thus constitutes the best astrophysical evidence for the existence of black ...
January 9, 2015
We summarize basic observational results on Sagittarius~A* obtained from the radio, infrared and X-ray domain. Infrared observations have revealed that a dusty S-cluster object (DSO/G2) passes by SgrA*, the central super-massive black hole of the Milky Way. It is still expected that this event will give rise to exceptionally intense activity in the entire electromagnetic spectrum. Based on February to September 2014 SINFONI observations. The detection of spatially compact and...
June 22, 2009
Very strong evidence suggests that Sagittarius A*, a compact radio source at the center of the Milky Way, marks the position of a super massive black hole. The proximity of Sgr A* in combination with its mass makes its apparent event horizon the largest of any black hole candidate in the universe and presents us with a unique opportunity to observe strong-field GR effects. Recent millimeter very long baseline interferometric observations of Sgr A* have demonstrated the existe...
June 24, 1997
We report first results from a multiwavelength campaign to measure the simultaneous spectrum of Sgr A* from cm to mm wavelengths. The observations confirm that the previously detected submm-excess is not due to variability; the presence of an ultracompact component with a size of a few Schwarzschild radii is inferred. In a VLA survey of LINER galaxies, we found Sgr A*-like nuclei in one quarter of the galaxies searched, suggesting a link between those low-power AGN and the Ga...
August 24, 1993
The Galactic Center shows evidence for the presence of three important AGN ingredients: a Black Hole ($M_\bullet\sim10^6M_\odot$), an accretion disk ($10^{-8.5} - 10^{-7} M_\odot/{\rm yr}$) and a powerful jet (jet power $\ge$ 10\% disk luminosity). However, the degree of activity is very low and can barely account for the energetics of the whole central region. Neverthelss, in the very inner arsecond the central engine becomes dominant and provides an interesting laboratory f...
January 12, 1998
We report results from a multiwavelength campaign to measure the simultaneous spectrum of the super-massive black hole candidate Sgr A* in the Galactic Center from cm to mm-wavelengths using the VLA, BIMA, the Nobeyama 45m, and the IRAM 30m telescopes. The observations confirm that the previously detected mm-excess is an intrinsic feature of the spectrum of Sgr A*. The excess can be interpreted as due to the presence of an ultra-compact component of relativistic plasma with a...
February 23, 2015
We report new observations with the Very Large Array, Atacama Large Millimeter Array, and Submillimeter Array at frequencies from 1.0 to 355 GHz of the Galactic Center black hole, Sagittarius A*. These observations were conducted between October 2012 and November 2014. While we see variability over the whole spectrum with an amplitude as large as a factor of 2 at millimeter wavelengths, we find no evidence for a change in the mean flux density or spectrum of Sgr A* that can b...
December 23, 2015
Context. The compact radio and near-infrared (NIR) source Sagittarius A* (Sgr A*) associated with the supermassive black hole in the Galactic center was observed at 7 mm in the context of a NIR triggered global Very Long Baseline Array (VLBA) campaign. Aims. Sgr A* shows variable flux densities ranging from radio through X-rays. These variations sometimes appear in spontaneous outbursts that are referred to as flares. Multi-frequency observations of Sgr A* provide access to e...
September 15, 2008
The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation (ref 1). Sagittarius A*, the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4 million times that of the Sun (refs. 2,3). A long-standing astronomical goal is to resolve structures...
January 30, 2020
We present models of Galactic Center emission in the vicinity of Sagittarius A* that use parametrizations of the electron temperature or energy density. These models include those inspired by two-temperature general relativistic magnetohydrodynamic (GRMHD) simulations as well as jet-motivated prescriptions generalizing equipartition of particle and magnetic energies. From these models, we calculate spectra and images and classify them according to their distinct observational...