May 15, 1995
Similar papers 4
March 19, 2019
The detection of a pulsar (PSR) in a tight, relativistic orbit around a supermassive or intermediate mass black hole - such as those in the Galactic centre or in the centre of Globular clusters - would allow for precision tests of general relativity (GR) in the strong-field, non-linear regime. We present a framework for calculating the theoretical time-frequency signal from a PSR in such an Extreme Mass Ratio Binary (EMRB). This framework is entirely relativistic with no weak...
November 26, 2004
We investigate the effects of gravitational lensing in the binary pulsar system J0737-3039. Current measurement of the orbital inclination allows the millisecond pulsar (A) to pass very close (at R_{min}=4000 km) in projection to the companion pulsar (B), with R_{min} comparable to the Einstein radius (2600 km). For this separation at the conjunction, lensing causes small (about 10%) magnification of the pulsar A signal on a timescale of several seconds, and displaces the pul...
November 22, 1999
The influence of the low-frequency timing noise on the precision of measurements of the Keplerian and post-Keplerian orbital parameters in binary pulsars is studied. Fundamental limits on the accuracy of tests of alternative theories of gravity in the strong-field regime are established. The gravitational low-frequency timing noise formed by an ensemble of binary stars is briefly discussed.
December 17, 2017
The observed values of the rate of change of the orbital and the spin periods of pulsars are affected by different dynamical effects, for example, the line-of-sight acceleration and the proper motion of the pulsar relative to the sun. We explore these dynamical effects thoroughly and point out the drawbacks of popular methods. We introduce a package, `GalDynPsr', that evaluates different dynamical effects following traditional as well as improved methods based on the model of...
July 30, 2022
Searches for empirical clues beyond Einstein's general relativity (GR) are crucial to understand gravitation and spacetime. Radio pulsars have been playing an important role in testing gravity theories since 1970s. Because radio timing of binary pulsars is very sensitive to changes in the orbital dynamics, small deviations from what GR predicts can be captured or constrained. In this sense, the gravity sector in the standard-model extension was constrained tightly with a set ...
December 22, 2004
The energy-loss formula of the production of gravitons by the binary is derived in the source theory formulation of gravity. Then, the quantum energy-loss formula involving radiative corrections is derived. We postulate an idea that gravitational pulsars are present in our universe and that radiative corrections play a role in the physics of the cosmological scale. In the last part of the article, we consider so called electromagnetic pulsar which is formed by two particles w...
October 7, 2022
We report the results of timing observations of PSR J1952+2630, a 20.7 ms pulsar in orbit with a massive white dwarf companion. With the increased timing baseline, we obtain improved estimates for astrometric, spin, and binary parameters for this system. We get an improvement of an order of magnitude on the proper motion, and, for the first time, we detect three post-Keplerian parameters in this system: the advance of periastron, the orbital decay, and the Shapiro delay. We c...
September 26, 2006
We study the gravitational Faraday rotation, on linearly polarized light rays emitted by a pulsar, orbiting another compact object. We relate the rotation angle to the orbital phase of the emitting pulsar, as well as to other parameters describing its orbit and the orientation of the angular momentum of the binary companion. We give numerical estimates of the effect for the double-pulsar system PSR J0737-3039, and we note that the expected magnitude is exceedingly small, maki...
July 12, 2014
An outstanding question in modern Physics is whether general relativity (GR) is a complete description of gravity among bodies at macroscopic scales. Currently, the best experiments supporting this hypothesis are based on high-precision timing of radio pulsars. This chapter reviews recent advances in the field with a focus on compact binary millisecond pulsars with white-dwarf (WD) companions. These systems - if modeled properly - provide an unparalleled test ground for physi...
September 1, 2023
We put forward a new procedure for measuring the spin of a black hole with unprecedented accuracy based on gravitational lensing of millisecond pulsars. The deflection angle of light increases by increasing the rotation parameter. For primary and secondary images the angular positions are larger for rotating black holes by an amount of the order of microarcseconds. Also, the differential time delay for the case of a rotating black hole is larger than that for the non-rotating...