January 23, 2007
We obtained steady solutions of optically thin, single temperature, magnetized black hole accretion disks assuming thermal bremsstrahlung cooling. Based on the results of 3D MHD simulations of accretion disks, we assumed that the magnetic fields inside the disk are turbulent and dominated by azimuthal component. We decomposed magnetic fields into an azimuthally averaged mean field and fluctuating fields. We also assumed that the azimuthally averaged Maxwell stress is proporti...
January 3, 2014
Black hole accretion flows can be divided into two broad classes: cold and hot. Cold accretion flows, which consist of cool optically thick gas, are found at relatively high mass accretion rates. Prominent examples are the standard thin disk, which occurs at a fraction of the Eddington mass accretion rate, and the slim disk at super-Eddington rates. These accretion flows are responsible for luminous systems such as active galactic nuclei radiating at or close to the Eddington...
March 3, 2009
We present new thermal equilibrium solutions for optically thin and thick disks incorporating magnetic fields. The purpose of this paper is to explain the bright hard state and the bright/slow transition observed in the rising phases of outbursts in BHCs. On the basis of the results of 3D MHD simulations, we assume that magnetic fields inside the disk are turbulent and dominated by the azimuthal component and that the azimuthally averaged Maxwell stress is proportional to the...
February 20, 1998
Accretion disks around black holes in which the shear stress is proportional to the total pressure, the accretion rate is more than a small fraction of Eddington, and the matter is distributed smoothly are both thermally and viscously unstable in their inner portions. The nonlinear endstate of these instabilities is uncertain. Here a new inhomogeneous equilibrium is proposed which is both thermally and viscously stable. In this equilibrium the majority of the mass is in dense...
October 2, 1995
We study the spectral properties of a very general class of accretion disks which can be decomposed into three distinct components apart from a shock at $r=r_s$: (1) An optically thick Keplerian disk on the equatorial plane ($r>r_s$), (2) A sub-Keplerian optically thin halo above and below this Keplerian disk $r>r_s$ and (3) A hot, optically slim, $\tau\sim 1$ postshock region $r<r_s\sim 5-10 r_g$ where $r_g$ is the Schwarzschild radius. The postshock region intercepts soft p...
August 27, 2009
We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter $0.2\gsim\alpha\gsim0.0005$, flow behavior v...
October 5, 1995
It has been found that a class of optically-thin two-temperature advection-dominated accretion solutions explains many observations of low-luminosity accreting black holes. Here it is shown that these models give a satisfactory description also of higher luminosity systems, provided the viscosity parameter $\alpha$ is large. The models reproduce the spectra of black hole X-ray binaries in the Low State, and explain the transition from the Low State to the High State at a crit...
October 10, 2004
We consider the effects of advection and radial gradients of pressure and radial drift velocity on the structure of accretion disks around black holes with proper description of optically thick/thin transitions. We concentrated our efforts on the models with large accretion rate. Contrary to disk models neglecting advection, we find that continuous solutions extending from the outer disk regions to the inner edge exist for all accretion rates we have considered. We show that ...
May 10, 2016
We present a numerical method which evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components -- ions and electrons -- which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a standa...
February 28, 2023
We present analytical solutions for the thermodynamic (temperature, pressure, density, etc.) properties of thin accretion flows in the region within the innermost stable circular orbit (ISCO) of a Kerr black hole, the first analytical solutions of their kind. These solutions are constructed in the adiabatic limit and neglect radiative losses, an idealisation valid for a restricted region of parameter space. We highlight a number of remarkable properties of these solutions, in...