December 17, 1997
The Fourier frequency dependent hard X-ray lag, first discovered from the analysis of aperiodic variability of the light curves of the black hole candidate Cygnus X-1, turns out to be a property shared by several other accreting compact sources. We show that the lag can be explained in terms of Comptonization process in coronae of hot electrons with inhomogeneous density distributions. The density profile of a corona, like the optical depth and electron temperature, can signi...
September 13, 2022
Cygnus X-1, as the first discovered black hole binary, is a key source for understanding the mechanisms of state transitions, and the scenarios of accretion in extreme gravity fields. We present a spectral-timing analysis of observations taken with the Insight-HXMT mission, focusing on the spectral-state dependent timing properties in the broad energy range of 1--150 keV, thus extending previous RXTE-based studies to both lower and higher energies. Our main results are the fo...
March 20, 1996
We have analyzed approximately 1100 days of Cygnus X-1 hard X-ray data obtained with BATSE to study its rapid variability. We find for the first time correlations between the slope of the spectrum and the hard X-ray intensity, and between the spectral slope and the amplitude of the rapid variations of the hard X-ray flux. We compare our results with expectations from current theories of accretion onto black holes.
June 19, 2019
We present the first X-ray reverberation mass measurement of a stellar-mass black hole. Accreting stellar-mass and supermassive black holes display characteristic spectral features resulting from reprocessing of hard X-rays by the accretion disc, such as an Fe K$\alpha$ line and a Compton hump. This emission probes of the innermost region of the accretion disc through general relativistic distortions to the line profile. However, these spectral distortions are insensitive to ...
August 5, 2024
General relativistic effects are strong near the black hole of an X-ray binary and significantly impact the total energy released at the innermost accretion disk's region. Our goal is to fully incorporate the black hole's spin and all the general relativistic effects on the observed spectra coming from X-ray binary systems while maintaining the simplicity of the standard disk model. That is possible by appropriately shifting only the disk's inner radius. We employ some of the...
April 7, 2013
Unified X-ray spectral and timing studies of Cygnus X-1 in the low/hard and hard intermediate state were conducted in a model-independent manner, using broadband Suzaku data acquired on 25 occasions from 2005 to 2009 with a total exposure of ~ 450 ks. The unabsorbed 0.1--500 keV source luminosity changed over 0.8--2.8% of the Eddington limit for 14.8 solar masses. Variations on short (1--2 seconds) and long (days to months) time scales require at least three separate componen...
June 2, 2000
We use time domain analysis techniques to investigate the rapid variability of Cygnus X-1. We show that the cross-correlation functions between hard and soft energy bands reach values very close to unity and peak at a lag of less than 2 millisecond for energies separated by a factor of 10. This confirms that the process that produces X-ray photons at different energies is extremely coherent on short time scales and strongly constrains emission models proposed to explain Fouri...
July 12, 2011
We review the spectral properties of the black hole candidate Cygnus X-1. Specifically, we discuss two recent sets of multi-satellite observations. One comprises a 0.5-500 keV spectrum, obtained with every flying X-ray satellite at that time, that is among the hardest Cyg X-1 spectra observed to date. The second set is comprised of 0.5-40 keV Chandra-HETG plus RXTE-PCA spectra from a radio-quiet, spectrally soft state. We first discuss the "messy astrophysics" often neglected...
May 28, 2010
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of parameters - the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band hig...
June 11, 2013
The way in which the X-ray photon index, {\Gamma}, varies as a function of count rate is a strong diagnostic of the emission processes and emission geometry around accreting compact objects. Here we present the results from a study using a new, and simple, method designed to improve sensitivity to the measurement of the variability of {\Gamma} on very short time-scales. We have measured {\Gamma} in ~2 million spectra, extracted from observations with a variety of different ...