April 23, 1999
Similar papers 2
February 25, 2002
I discuss the state of the art in the search for neutrinos from galactic stellar collapses and the future perspectives of this field. The implications for the neutrino physics of a high statistics supernova neutrino burst detection by the network of detectors operating around the world are also reviewed.
April 25, 2019
We study several methods for timing the neutrino signal of a Galactic supernova (SN) for different detectors via Monte Carlo simulations. We find that, for the methods we studied, at a distance of $10\,$kpc both Hyper-Kamiokande and IceCube can reach precisions of $\sim1\,$ms for the neutrino burst, while a potential IceCube Gen2 upgrade will reach submillisecond precision. In the case of a failed SN, we find that detectors such as SK and JUNO can reach precisions of $\sim0.1...
January 13, 2000
We discuss the prospects for detecting nu_{mu,tau} and nu_{tau}neutrinos from Type II supernovas using the novel detector at the Supernova Burst Observatory (SNBO) or OMNIS that is being designed for an underground laboratory in the USA. This detector would collect ~2000 flavor selected events from a Galactic supernova and could probe neutrino mass down to a few eV, as well as the dynamics of the supernova process. We believe this is essential to further our understanding of ...
August 22, 2000
World-wide, several detectors currently running or nearing completion are sensitive to a core collapse supernova neutrino signal in the Galaxy. I will briefly describe the nature of the neutrino signal and then survey current and future detection techniques. I will also explore what physics and astrophysics we can learn from the next Galactic core collapse.
May 2, 2003
I describe how the signals corresponding to the supernova $\nu_e$ and $\bar{\nu}_e$ (charged current reactions) as well as all active neutrinos (neutral current reactions) can be separately observed in various existing detectors. These observations would make it possible to determine the flux and average energy (or temperature) for each of these three neutrino signal components. I argue that all these quantities are needed in order to understand the interplay between the so f...
June 19, 2003
A new method to study the effects of neutrino masses on a supernova neutrino signal is proposed. The method relies exclusively on the analysis of the full statistics of neutrino events, it is independent of astrophysical assumptions, and does not require the observation of any additional phenomenon to trace possible delays in the neutrino arrival times. The sensitivity of the method to the sub-eV neutrino mass range, defined as the capability of disentangling at 95% c.l. the ...
January 30, 2004
A new method to study the effects of neutrino masses on a supernova neutrino signal is proposed. The method relies exclusively on the analysis of the full statistics of neutrino events, it is independent of astrophysical assumptions, and does not require the observation of any additional phenomenon to trace possible delays in the neutrino arrival times. A statistics of several thousands of events as could be collected by SuperKamiokande, would allow to explore a neutrino mass...
March 10, 2020
The multi-messenger observation of the next galactic core-collapse supernova will shed light on the different physical processes involved in these energetic explosions. Good timing and pointing capabilities of neutrino detectors would help in the search for an electromagnetic or gravitational-wave counterparts. An approach for the determination of the arrival time delay of the neutrino signal at different experiments using a direct detected neutrino light-curve matching is ...
November 28, 2005
We study the sensitivity to neutrino masses of a Galactic supernova neutrino signal as could be measured with the detectors presently in operation and with future large volume water \v{C}erencov and scintillator detectors. The analysis uses the full statistics of neutrino events. The method proposed uses the principles of Bayesian inference reasoning and has shown a remarkably independence of astrophysical assumptions. We show that, after accounting for the uncertainties in t...
January 4, 2007
The gravitational core collapse of a star produces a huge burst of neutrinos of all flavors. A number of detectors worldwide are sensitive to such a burst; its detection would yield information about both particle physics and astrophysics. Sensitivity to all flavors, and ability to tag different interactions, will be key for extraction of information. Here I will survey the capabilities of current and future detectors for detection of supernova neutrinos from the Milky Way an...