April 1, 1994
Recent molecular simulation and integral equation results alkali-halide ion pair potentials-of-mean-force in water are discussed. Dielectric model calculations are implemented to check that these models produce that characteristic structure of contact and solvent-separated minima for oppositely charged ions in water under physiological thermodynamic conditions. Comparison of the dielectric model results with the most current molecular level information indicates that the dielectric model does not, however, provide an accurate description of these potentials-of-mean-force. We note that linear dielectric models correspond to modelistic implementations of second-order thermodynamic perturbation theory for the excess chemical potential of a distinguished solute molecule. Therefore, the molecular theory corresponding to the dielectric models is second-order thermodynamic perturbation theory for that excess chemical potential. The second-order, or fluctuation, term raises a technical computational issue of treatment of long-ranged interactions similar to the one which arises in calculation of the dielectric constant of the solvent. It is contended that the most important step for further development of dielectric models would be a separate assessment of the first-order perturbative term (equivalently the {\it potential at zero charge} ) which vanishes in the dielectric models but is generally nonzero. Parameterization of radii and molecular volumes should then be based of the second-order perturbative term alone. Illustrative initial calculations are presented and discussed.
Similar papers 1
January 29, 2021
We study ion pair dissociation in water at ambient conditions using a combination of classical and ab initio approaches. The goal of this study is to disentangle the sources of discrepancy observed in computed potentials of mean force. In particular we aim to understand why some models favor the stability of solvent-separated ion pairs versus contact ion pairs. We found that some observed differences can be explained by non-converged simulation parameters. However, we also un...
April 1, 1994
A dielectric model of electrostatic solvation is applied to describe potentials of mean force in water along reaction paths for: a) formation of a sodium chloride ion pair; b) the symmetric SN2 exchange of chloride in methylchloride; and c) nucleophilic attack of formaldehyde by hydroxide anion. For these cases simulation and XRISM results are available for comparison. The accuracy of model predictions varies from spectacular to mediocre. It is argued that: a) dielectric mode...
August 10, 2023
The inclusion of electronic polarization is of crucial importance in molecular simulations of systems containing charged moieties. When neglected, as often done in force field simulations, charge-charge interactions in solution may become severely overestimated leading to unrealistically strong bindings of ions to biomolecules. The electronic continuum correction introduces electronic polarization in a mean-field way via scaling of charges by the reciprocal of the square root...
May 25, 1995
The hydration free energies of ions exhibit an approximately quadratic dependence on the ionic charge, as predicted by the Born model. We analyze this behavior using second-order perturbation theory. This provides effective methods to calculating free energies from equilibrium computer simulations. The average and the fluctuation of the electrostatic potential at charge sites appear as the first coefficients in a Taylor expansion of the free energy of charging. Combining the ...
March 15, 1994
The calculation of the solvation properties of a single water molecule in liquid water is carried out in two ways. In the first, the water molecule is placed in a cavity and the solvent is treated as a dielectric continuum. This model is analyzed by numerically solving the Poisson equation using the DelPhi program. The resulting solvation properties depend sensitively on the shape and size of the cavity. In the second method, the solvent and solute molecules are treated expli...
June 5, 2018
The dielectric constant of ionic solutions is known to reduce with increasing ionic concentrations. However, the origin of this effect has not been thoroughly explored. In this paper we study two such possible sources: long-range Coulombic correlations and solvent excluded volume. Correlations originate from fluctuations of the electrostatic potential beyond the mean-field Poisson-Boltzmann theory, evaluated by employing a field-theoretical loop expansion of the free energy. ...
April 20, 2020
We have developed a molecular mean-field theory -- fourth-order Poisson-Nernst-Planck-Bikerman theory -- for modeling ionic and water flows in biological ion channels by treating ions and water molecules of any volume and shape with interstitial voids, polarization of water, and ion-ion and ion-water correlations. The theory can also be used to study thermodynamic and electrokinetic properties of electrolyte solutions in batteries, fuel cells, nanopores, porous media includin...
November 2, 2023
The extent of ion pairing in solution is an important phenomenon to rationalise transport and thermodynamic properties of electrolytes. A fundamental measure of this pairing is the potential of mean force (PMF) between the solvated ions. The relative stabilities of the paired and solvent separated states in the PMF are highly sensitive to the underlying potential energy surface. However direct application of accurate electronic structure methods to resolve this property is ch...
April 3, 2014
Understanding dielectric spectra can reveal important information about the dynamics of solvents and solutes from the dipolar relaxation times down to electronic ones. In the late 1970s, Hubbard and Onsager predicted that adding salt ions to a polar solution would result in a reduced dielectric permittivity that arises from the unexpected tendency of solvent dipoles to align opposite to the applied field. So far, this effect has escaped an experimental verification, mainly be...
June 16, 1998
Recent developments in molecular theories and simulation of ions and polar molecules in water are reviewed. The hydration of imidazole and imidazolium solutes is used to exemplify the theoretical issues. The treatment of long-ranged electrostatic interactions in simulations is discussed extensively. It is argued that the Ewald approach is an easy way to get correct hydration free energies in the thermodynamic limit from molecular calculations; and that molecular simulations w...