August 19, 1997
Similar papers 3
October 16, 1997
There has recently been considerable interest in the use of lexically-based statistical techniques to resolve prepositional phrase attachments. To our knowledge, however, these investigations have only considered the problem of attaching the first PP, i.e., in a [V NP PP] configuration. In this paper, we consider one technique which has been successfully applied to this problem, backed-off estimation, and demonstrate how it can be extended to deal with the problem of multiple...
November 17, 1997
We introduce a novel parser based on a probabilistic version of a left-corner parser. The left-corner strategy is attractive because rule probabilities can be conditioned on both top-down goals and bottom-up derivations. We develop the underlying theory and explain how a grammar can be induced from analyzed data. We show that the left-corner approach provides an advantage over simple top-down probabilistic context-free grammars in parsing the Wall Street Journal using a gramm...
October 3, 2021
Likelihood ratios (LRs), which are commonly used for probabilistic data processing, are often estimated based on the frequency counts of individual elements obtained from samples. In natural language processing, an element can be a continuous sequence of $N$ items, called an $N$-gram, in which each item is a word, letter, etc. In this paper, we attempt to estimate LRs based on $N$-gram frequency information. A naive estimation approach that uses only $N$-gram frequencies is s...
July 11, 1997
We present an algorithm that automatically learns context constraints using statistical decision trees. We then use the acquired constraints in a flexible POS tagger. The tagger is able to use information of any degree: n-grams, automatically learned context constraints, linguistically motivated manually written constraints, etc. The sources and kinds of constraints are unrestricted, and the language model can be easily extended, improving the results. The tagger has been tes...
May 1, 1995
We describe a corpus-based induction algorithm for probabilistic context-free grammars. The algorithm employs a greedy heuristic search within a Bayesian framework, and a post-pass using the Inside-Outside algorithm. We compare the performance of our algorithm to n-gram models and the Inside-Outside algorithm in three language modeling tasks. In two of the tasks, the training data is generated by a probabilistic context-free grammar and in both tasks our algorithm outperforms...
January 14, 2014
A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to ...
February 27, 1995
This paper presents a grammar formalism designed for use in data-oriented approaches to language processing. The formalism is best described as a right-linear indexed grammar extended in linguistically interesting ways. The paper goes on to investigate how a corpus pre-parsed with this formalism may be processed to provide a probabilistic language model for use in the parsing of fresh texts.
May 10, 1994
We present an algorithm for computing n-gram probabilities from stochastic context-free grammars, a procedure that can alleviate some of the standard problems associated with n-grams (estimation from sparse data, lack of linguistic structure, among others). The method operates via the computation of substring expectations, which in turn is accomplished by solving systems of linear equations derived from the grammar. We discuss efficient implementation of the algorithm and rep...
May 10, 1995
In this paper we present some novel applications of Explanation-Based Learning (EBL) technique to parsing Lexicalized Tree-Adjoining grammars. The novel aspects are (a) immediate generalization of parses in the training set, (b) generalization over recursive structures and (c) representation of generalized parses as Finite State Transducers. A highly impoverished parser called a ``stapler'' has also been introduced. We present experimental results using EBL for different corp...
October 21, 1994
This paper presents a syntactic lexicon for English that was originally derived from the Oxford Advanced Learner's Dictionary and the Oxford Dictionary of Current Idiomatic English, and then modified and augmented by hand. There are more than 37,000 syntactic entries from all 8 parts of speech. An X-windows based tool is available for maintaining the lexicon and performing searches. C and Lisp hooks are also available so that the lexicon can be easily utilized by parsers and ...