May 16, 2000
Similar papers 2
September 2, 2011
We measure the excited-state spectrum of a Si/SiGe quantum dot as a function of in-plane magnetic field, and we identify the spin of the lowest three eigenstates in an effective two-electron regime. The singlet-triplet splitting is an essential parameter describing spin qubits, and we extract this splitting from the data. We find it to be tunable by lateral displacement of the dot, which is realized by changing two gate voltages on opposite sides of the device. We present cal...
August 29, 1997
We study ground states and excited states in semiconductor quantum dots containing 1 to 12 electrons. For the first time, it is possible to identify the quantum numbers of the states in the excitation spectra and make a direct comparison to exact calculations. A magnetic field induces transitions between excited states and ground state. These transitions are discussed in terms of crossings between single-particle states, singlet-triplet transitions, spin polarization, and Hun...
November 18, 2008
We report measurements on a silicon nanowire quantum dot with a clarity that allows for a complete understanding of the spin states of the first four holes. First, we show control of the hole number down to one. Detailed measurements at perpendicular magnetic fields reveal the Zeeman splitting of a single hole in silicon. We are able to determine the ground-state spin configuration for one to four holes occupying the quantum dot and find a spin filling with alternating spin-d...
March 19, 1998
We present an experimental and theoretical study of electron tunnelling through quantum dots which focusses the attention on the amplitude of the current peaks as a function of magnetic field. We demonstrate that the amplitudes of the current peaks in the tunnelling spectra show a dramatically different behaviour as a function of the magnetic field, depending on the angular momentum of the dot state through which tunnelling occurs. This is seen in the non-monotonic behaviour ...
November 15, 1999
We have calculated the linear magnetoconductance across a vertical parabolic Quantum Dot with a magnetic field in the direction of the current. Gate voltage and magnetic field are tuned at the degeneracy point between the occupancies N=2 and N=3, close to the Singlet-Triplet transition for N=2. We find that the conductance is enhanced prior to the transition by nearby crossings of the levels of the 3 particle dot. Immediately after it is depressed by roughly 1/3, as long as t...
February 11, 1998
From accurate measurements of the energy states in a double quantum dot we deduce the change in magnetization due to single electron tunneling. As a function of magnetic field we observe crossings and anti-crossings in the energy spectrum. The change in magnetization exhibits wiggles as a function of magnetic field with maximum values of a few effective Bohr magnetons in GaAs. These wiggles are a measure of the chaotic motion of the discrete energy states versus magnetic fiel...
November 18, 2008
The electron-electron correlations in a many-electron (Ne = 1, 2,..., 5) quantum dot confined by a parabolic potential is investigated in the presence of a single magnetic ion and a perpendicular magnetic field. We obtained the energy spectrum and calculated the addition energy which exhibits cusps as function of the magnetic field. The vortex properties of the many-particle wave function of the ground state are studied and for large magnetic fields are related to composite f...
June 20, 2002
The spin-orbit coupling influences the total spin of semiconductor quantum dots. We analyze the theoretical prediction for the combined effects of spin-orbit coupling, weak vertical magnetic fields and deformation of the dot. Our results allow the characterization of the quantum dots as spin switches, controllable with electric gates.
July 31, 1999
We study a small spin-degenerate quantum dot with even number of electrons, weakly connected by point contacts to the metallic electrodes, and subject to an external magnetic field. If the Zeeman energy B is equal to the single-particle level spacing $\Delta $ in the dot, the ground state of the dot becomes doubly degenerate, and the system exhibits Kondo effect, despite the fact that B exceeds by far the Kondo temperature $T_{K}$. A possible realization of this in tunneling ...
February 13, 2004
A tool for the identification of the shape of quantum dots is developed. By preparing a two-electron quantum dot, the response of the low-lying excited states to a homogeneous magnetic field, i.e. their spin and parity oscillations, is studied for a large variety of dot shapes. For any geometric configuration of the confinement we encounter characteristic spin singlet - triplet crossovers. The magnetization is shown to be a complementary tool for probing the shape of the dot.