December 12, 2005
We study the effects of electron-electron interactions in a circular few-electron vertical quantum dot in such a strong magnetic field that the filling factor $\nu\le 1$. We measure excitation spectra and find ground state transitions beyond the maximum density droplet ($\nu=1$) region. We compare the observed spectra with those calculated by exact diagonalization to identify the ground state quantum numbers, and find that intermediate low-spin states occur between adjacent s...
September 14, 2005
We investigate Kondo effect and spin blockade observed on a many-electron quantum dot and study the magnetic field dependence. At lower fields a pronounced Kondo effect is found which is replaced by spin blockade at higher fields. In an intermediate regime both effects are visible. We make use of this combined effect to gain information about the internal spin configuration of our quantum dot. We find that the data cannot be explained assuming regular filling of electronic or...
September 24, 2009
We calculate that the electron states of strained self-assembled Ge/Si quantum dots provide a convenient two-state system for electrical control. An electronic state localized at the apex of the quantum dot is nearly degenerate with a state localized at the base of the quantum dot. Small electric fields shift the electronic ground state from apex-localized to base-localized, which permits sensitive tuning of the electronic, optical and magnetic properties of the dot. As one e...
December 31, 2004
We present a method for reading out the spin state of electrons in a quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. We experimentally demonstrate the method by performing read-o...
October 14, 1998
We have measured electron transport through a vertical quantum dot containing a tunable number of electrons between 0 and 40. Over some region in magnetic field the electrons are spin polarized and occupy successive angular momentum states, i.e. the maximum density droplet (MDD) state. The stability region where the MDD state is the ground state, decreases for increasing electron number. The instability of the MDD is accompanied by a redistribution of charge which increases t...
November 29, 2021
Electron spins in silicon quantum dots are excellent qubits because they have long coherence times, high gate fidelities, and are compatible with advanced semiconductor manufacturing techniques. The valley degree of freedom, which results from the specific character of the Si band structure, is a unique feature of electrons in Si spin qubits. However, the small difference in energy between different valley levels often poses a challenge for quantum computing in Si. Here, we s...
October 16, 2015
Recent radio frequency scanning tunneling spectroscopy (rf-STS) experiments have demonstrated nuclear and electron spin excitations up to $\pm12\hbar$ in a single molecular spin quantum dot (qudot). Despite the profound experimental evidence, the observed independence of the well-established dipole selection rules is not described by existing theory of magnetic resonance -- pointing to a new excitation mechanism. Here we solve the puzzle of the underlying mechanism by present...
April 4, 2012
Understanding interactions between orbital and valley quantum states in silicon nanodevices is crucial in assessing the prospects of spin-based qubits. We study the energy spectra of a few-electron silicon metal-oxide-semiconductor quantum dot using dynamic charge sensing and pulsed-voltage spectroscopy. The occupancy of the quantum dot is probed down to the single-electron level using a nearby single-electron transistor as a charge sensor. The energy of the first orbital exc...
April 15, 2002
We investigate non-equilibrium transport in the absence of spin-flip energy relaxation in a few-electron quantum dot artificial atom. Novel non-equilibrium tunneling processes involving high-spin states which cannot be excited from the ground state because of spin-blockade, and other processes involving more than two charge states are observed. These processes cannot be explained by orthodox Coulomb blockade theory. The absence of effective spin relaxation induces considerabl...
October 26, 2011
We report detailed transport measurements in a quantum dot in a spin-flip co-tunneling regime, and a quantitative comparison of the data to microscopic theory. The quantum dot is fabricated by lateral gating of a GaAs/AlGaAs heterostructure, and the conductance is measured in the presence of an in-plane Zeeman field. We focus on the ratio of the nonlinear conductance values at bias voltages exceeding the Zeeman threshold, a regime that permits a spin flip on the dot, to those...