May 22, 2000
Similar papers 3
November 10, 2004
Interfacial properties of colloid--polymer mixtures are examined within an effective one--component representation, where the polymer degrees of freedom are traced out, leaving a fluid of colloidal particles interacting via polymer--induced depletion forces. Restriction is made to zero, one and two--body effective potentials, and a free energy functional is used which treats colloid excluded volume correlations within Rosenfeld's Fundamental Measure Theory, and depletion--ind...
July 23, 2011
We construct a non-perturbative fully analytical approximation for the thermodynamics and the structure of nonadditive hard-sphere fluid mixtures. The method essentially lies in a heuristic extension of the Percus-Yevick solution for additive hard spheres. Extensive comparison with Monte Carlo simulation data shows a generally good agreement, especially in the case of like-like radial distribution functions.
June 26, 2006
In the spirit of the White-Bear version of fundamental measure theory we derive a new density functional for hard-sphere mixtures which is based on a recent mixture extension of the Carnahan-Starling equation of state. In addition to the capability to predict inhomogeneous density distributions very accurately, like the original White-Bear version, the new functional improves upon consistency with an exact scaled-particle theory relation in the case of the pure fluid. We exam...
January 7, 1999
Based on density functional theory the influence of curvature on the depletion potential of a single big hard sphere immersed in a fluid of small hard spheres with packing fraction \eta_s either inside or outside of a hard spherical cavity of radius R_c is calculated. The relevant features of this potential are analyzed as function of \eta_s and R_c. There is a very slow convergence towards the flat wall limit R_c \to \infty. Our results allow us to discuss the strength of de...
August 3, 2020
This Perspective article provides an overview of some of our analytical approaches to the computation of the structural and thermodynamic properties of single-component and multicomponent hard-sphere fluids. For the structural properties, they yield a thermodynamically consistent formulation, thus improving and extending the known analytical results of the Percus--Yevick theory. Approximate expressions linking the equation of state of the single-component fluid to the one of ...
June 11, 2021
The addition of co-solutes to colloidal suspensions is often employed to induce tunable depletion interactions. In this work we investigate effective colloidal interactions arising from binary co-solute mixtures of hard spheres and patchy particles. By changing the relative concentration of the two species, we show that the resulting effective potential $V_\text{eff}$ continuously changes from the one obtained for a single-component hard sphere co-solute to that mediated by t...
July 22, 2013
While the density functional theory with integral equations techniques are very efficient tools in numerical analysis of complex fluids, an analytical insight into the phenomenon of effective interactions is still limited. In this paper we propose a theory of binary systems which results in a relatively simple analytical expression combining arbitrary microscopic potentials into the effective interaction. The derivation is based on translating many particle Hamiltonian includ...
December 31, 2015
Depletion-induced interactions between colloids in colloid-polymer mixtures depend in range and strength on size, shape, and concentration of depletants. Crowding by colloids in turn affects shapes of polymer coils, such as biopolymers in biological cells. By simulating hard-sphere colloids and random-walk polymers, modeled as fluctuating ellipsoids, we compute depletion-induced potentials and polymer shape distributions. Comparing results with exact density-functional theory...
August 27, 2004
Density functional theory is used to study binary colloidal fluids consisting of hard spheres and thin platelets in their bulk and near a planar hard wall. This system exhibits liquid-liquid coexistence of a phase that is rich in spheres (poor in platelets) and a phase that is poor in spheres (rich in platelets). For the mixture near a planar hard wall, we find that the phase rich in spheres wets the wall completely upon approaching the liquid demixing binodal from the sphere...
August 25, 1999
The effective interaction energy of a colloidal sphere in a suspension containing small amounts of non-ionic polymers and a flat glass surface has been measured and calculated using total internal reflection microscopy (TIRM) and a novel approach within density functional theory (DFT), respectively. Quantitative agreement between experiment and theory demonstrates that the resulting repulsive part of the depletion forces cannot be interpreted entirely in terms of entropic arg...