May 30, 2000
Time evolutions whose infinitesimal generator is a fractional time derivative arise generally in the long time limit. Such fractional time evolutions are considered here for random walks. An exact relationship is given between the fractional master equation and a separable continuous time random walk of the Montroll-Weiss type. The waiting time density can be expressed using a generalized Mittag-Leffler function. The first moment of the waiting density does not exist.
Similar papers 1
May 6, 2007
We show the asymptotic long-time equivalence of a generic power law waiting time distribution to the Mittag-Leffler waiting time distribution, characteristic for a time fractional CTRW. This asymptotic equivalence is effected by a combination of "rescaling" time and "respeeding" the relevant renewal process followed by a passage to a limit for which we need a suitable relation between the parameters of rescaling and respeeding. Turning our attention to spatially 1-D CTRWs wit...
September 25, 2007
A physical-mathematical approach to anomalous diffusion may be based on fractional diffusion equations and related random walk models. The fundamental solutions of these equations can be interpreted as probability densities evolving in time of peculiar self-similar stochastic processes: an integral representation of these solutions is here presented. A more general approach to anomalous diffusion is known to be provided by the master equation for a continuous time random walk...
February 26, 2004
A detailed study is presented for a large class of uncoupled continuous-time random walks (CTRWs). The master equation is solved for the Mittag-Leffler survival probability. The properly scaled diffusive limit of the master equation is taken and its relation with the fractional diffusion equation is discussed. Finally, some common objections found in the literature are thoroughly reviewed.
December 30, 2007
To offer a view into the rapidly developing theory of fractional diffusion processes we describe in some detail three topics of present interest: (i) the well-scaled passage to the limit from continuous time random walk under power law assumptions to space-time fractional diffusion, (ii) the asymptotic universality of the Mittag-Leffler waiting time law in time-fractional processes, (iii) our method of parametric subordination for generating particle trajectories.
April 1, 2014
In the present Short Note an idea is proposed to explain the emergence and the observation of processes in complex media that are driven by fractional non-Markovian master equations. Particle trajectories are assumed to be solely Markovian and described by the Continuous Time Random Walk model. But, as a consequence of the complexity of the medium, each trajectory is supposed to scale in time according to a particular random timescale. The link from this framework to microsco...
October 8, 2002
The fractional diffusion equation is derived from the master equation of continuous-time random walks (CTRWs) via a straightforward application of the Gnedenko-Kolmogorov limit theorem. The Cauchy problem for the fractional diffusion equation is solved in various important and general cases. The meaning of the proper diffusion limit for CTRWs is discussed.
December 30, 2007
Starting from the model of continuous time random walk, we focus our interest on random walks in which the probability distributions of the waiting times and jumps have fat tails characterized by power laws with exponent between 0 and 1 for the waiting times, between 0 and 2 for the jumps. By stating the relevant lemmata (of Tauber type) for the distribution functions we need not distinguish between continuous and discrete space and time. We will see that, by a well-scaled pa...
July 13, 2010
In this paper we present an integro-differential diffusion equation for continuous time random walk that is valid for a generic waiting time probability density function. Using this equation we also study diffusion behaviors for a couple of specific waiting time probability density functions such as exponential, and a combination of power law and generalized Mittag-Leffler function. We show that for the case of the exponential waiting time probability density function a norma...
April 26, 2010
We discuss some applications of the Mittag-Leffler function and related probability distributions in the theory of renewal processes and continuous time random walks. In particular we show the asymptotic (long time) equivalence of a generic power law waiting time to the Mittag-Leffler waiting time distribution via rescaling and respeeding the clock of time. By a second respeeding (by rescaling the spatial variable) we obtain the diffusion limit of the continuous time random w...
January 16, 2007
It is our intention to provide via fractional calculus a generalization of the pure and compound Poisson processes, which are known to play a fundamental role in renewal theory, without and with reward, respectively. We first recall the basic renewal theory including its fundamental concepts like waiting time between events, the survival probability, the counting function. If the waiting time is exponentially distributed we have a Poisson process, which is Markovian. However,...