September 1, 2017
The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (rela...
June 6, 2021
We present a link between the theory of deep water waves and that of bubble surface perturbations. Theory correspondence is shown analytically for small wavelengths in the linear regime and investigated numerically in the nonlinear regime. To do so, we develop the second-order spatial perturbation equations for the Rayleigh-Plesset equation and solve them numerically. Our code is publicly available. Studying capillary waves on stable bubbles, we recreate the Kolmogorov-Zakhar...
June 13, 2017
A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage.
January 19, 2021
When a rising bubble in a Newtonian liquid reaches the liquid-air interface, it can burst, leading to the formation of capillary waves and a jet on the surface. Here, we numerically study this phenomenon in a yield stress fluid. We show how viscoplasticity controls the fate of these capillary waves and their interaction at the bottom of the cavity. Unlike Newtonian liquids, the free surface converges to a non-flat final equilibrium shape once the driving stresses inside the p...
August 15, 2016
Soap bubbles occupy the rare position of delighting and fascinating both young children and scientific minds alike. Sir Isaac Newton, Joseph Plateau, Carlo Marangoni, and Pierre-Gilles de Gennes, not to mention countless others, have discovered remarkable results in optics, molecular forces and fluid dynamics from investigating this seemingly simple system. We present here a compilation of curiosity-driven experiments that systematically investigate the surface flows on a ris...
October 20, 2018
Shapes and paths of an air bubble rising inside a liquid are investigated experimentally. About three hundred experiments are conducted in order to generate a phase plot in the Galilei and Eotvos numbers plane, which separates distinct regimes in terms of bubble behaviour. A wide range of the Galilei and Eotvos numbers are obtained by using aqueous glycerol solutions of different concentrations as the surrounding fluid, and by varying the bubble size. The dynamics is investig...
March 13, 2015
A theory of the collapse of a punctured antibubble is developed. The motion of the rim of air formed at the edge of the collapsing air film cannot be described by a potential flow and is characterized by high Reynolds numbers. The rim velocity is not constant but gradually decreases with time and is determined by the balance between the surface tension and hydrodynamic drag forces. A collapse equation is derived and solved. The agreement between the theory and existing experi...
September 18, 2024
A liquid jet plunging into a quiescent bath of the same liquid is a fundamental fluid mechanical problem underpinning a range of processes in industry and the natural world. Significant attention has been given to the study of plunging laminar Newtonian jets and the associated air entrainment that can occur. However, there have been very few (if any) studies devoted to the equivalent case for non-Newtonian viscoelastic liquids. Here we consider the laminar plunging and associ...
November 14, 2018
We investigate impact of a sphere onto a floating elastic sheet and the resulting formation and evolution of wrinkles in the sheet. Following impact, we observe a radially propagating wave, beyond which the sheet remains approximately planar but is decorated by a series of radial wrinkles whose wavelength grows in time. We develop a mathematical model to describe these phenomena by exploiting the asymptotic limit in which the bending stiffness is small compared to stresses in...
April 7, 1998
Experiments are conducted to study the path and shape of single air bubbles (diameter range 0.10- 0.20cm) rising freely in clean water. The experimental results demonstrate that the bubble shape has a bistable state, i. e. the bubble chooses to be in spherical or ellipsoidal shape depending on its generation mechanism. The path of a spherical/ellipsoidal bubble is found to change from a straight path to a zigzag/spiral path via a supercritical/subcritical bifurcation when the...