September 7, 2000
Similar papers 5
May 20, 1998
We report results of extensive Dynamical Monte Carlo investigations on self-assembled Equilibrium Polymers (EP) without loops in good solvent. (This is thought to provide a good model of giant surfactant micelles.) Using a novel algorithm we are able to describe efficiently both static and dynamic properties of systems in which the mean chain length $\Lav$ is effectively comparable to that of laboratory experiments (up to 5000 monomers, even at high polymer densities). We sam...
October 29, 2009
The basic ingredients of osmotic pressure are a solvent fluid with a soluble molecular species which is restricted to a chamber by a boundary which is permeable to the solvent fluid but impermeable to the solute molecules. For macroscopic systems at equilibrium, the osmotic pressure is given by the classical van't Hoff Law, which states that the pressure is proportional to the product of the temperature and the difference of the solute concentrations inside and outside the ch...
April 19, 1999
The inter-molecular structure of semidilute polymer solutions is studied theoretically. The low density limit of a generalized Ornstein-Zernicke integral equation approach to polymeric liquids is considered. Scaling laws for the dilute-to-semidilute crossover of random phase (RPA) like structure are derived for the inter-molecular structure factor on large distances when inter-molecular excluded volume is incorporated at the microscopic level. This leads to a non-linear equat...
March 28, 2006
Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with separation distances between one and ten colloid diameters covering the complete range from quasi two-dimensional to bulk-like behavior. We use the Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer interactions are hard-sphere like, whilst the pair ...
January 6, 2015
We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by a strong correlation attraction. As a reference system we choose a set of two subsystems - charged macromolecules immersed in a structureless oppositely charged background created by counterions...
November 28, 2002
A narrow Gaussian excluded volume potential, which tends to a delta-function repulsive potential in the limit of a width parameter d* going to zero, has been used to examine the universal consequences of excluded volume interactions on the equilibrium and linear viscoelastic properties of dilute polymer solutions. Brownian dynamics simulations data, acquired for chains of finite length, has been extrapolated to the limit of infinite chain length to obtain model independent pr...
August 31, 2005
The phase separation of a simple binary mixture of incompatible linear polymers in solution is investigated using an extension of the sedimentation equilibrium method, whereby the osmotic pressure of the mixture is extracted from the density profiles of the inhomogeneous mixture in a gravitational field. In Monte-Carlo simulations the field can be tuned to induce significant inhomogeneity, while keeping the density profiles sufficiently smooth for the macroscopic condition of...
June 5, 2018
Flory-Huggins theory is a mean field theory for modelling the free energy of dense polymer solutions and polymer melts. In this paper we use Flory-Huggins theory as a model of a dense two dimensional self-avoiding walk confined to a square in the square lattice. The theory describes the free energy of the walk well, and we estimate the Flory interaction parameter of the walk to be $\chi_{saw} = 0.32(1)$.
July 7, 2000
We present numerical and analytical results describing the effect of hydrodynamic interactions on the dynamics of a short polymer chain in solution. A molecular dynamics algorithm for the polymer is coupled to a direct simulation Monte Carlo algorithm for the solvent. We give an explicit expression for the velocity autocorrelation function of the centre of mass of the polymer which agrees well with numerical results if Brownian dynamics, hydrodynamic correlations and sound wa...
June 5, 2002
We determine the depletion-induced phase-behavior of hard sphere colloids and interacting polymers by large-scale Monte Carlo simulations using very accurate coarse-graining techniques. A comparison with standard Asakura-Oosawa model theories and simulations shows that including excluded volume interactions between polymers leads to qualitative differences in the phase diagrams. These effects become increasingly important for larger relative polymer size. Our simulations resu...