February 5, 2001
A study has been perfomed on the superconducting critical current density J_{c} flowing across low angle grain boundaries in epitaxial thin films of YBa{2}Cu{3}O{7-d} (YBCO). The materials studied were dual grain boundary rings deposited on SrTiO{3} and containing 2, 3, 5 and 7 degree tilt boundaries. The current density in self-field was determined by magnetometric methods at temperatures from 5 K to T_c. We conclude that at the higher temperatures of coated conductor applications, there is limited potential for improving J_{c} by reducing the grain boundary angle below about 3 degrees.
Similar papers 1
August 16, 2003
The critical current density flowing across low angle grain boundaries in YBa$_2$Cu$_3$O$_{7-\delta}$ thin films has been studied magnetometrically. Films (200 nm thickness) were deposited on SrTiO$_3$ bicrystal substrates containing a single [001] tilt boundary, with angles of 2, 3, 5, and 7 degrees, and the films were patterned into rings. Their magnetic moments were measured in applied magnetic fields up to 30 kOe at temperatures of 5 - 95 K; current densities of rings wit...
February 21, 2003
Transport critical current measurements have been performed on 5 degree [001]-tilt thin film YBa2Cu3O7-delta single grain boundaries with magnetic field rotated in the plane of the film, phi. The variation of the critical current has been determined as a function of the angle between the magnetic field and the grain boundary plane. In applied fields above 1 T the critical current, j_c, is found to be strongly suppressed only when the magnetic field is within an angle phi_k of...
August 22, 2007
We report on the in-plane magnetic field (H) dependence of the critical current density (Jc) in meandered and planar single grain boundaries (GBs) isolated in YBa2Cu3O7-d (YBCO) coated conductors. The Jc(H)properties of the planar GB are consistent with those previously seen in single GBs of YBCO films grown on SrTiO3 bi-crystals. In the straight boundary a characteristic flux channeling regime when H is oriented near the GB plane, associated with a reduced Jc, is seen. The m...
January 19, 2005
The critical current density of epitaxial YBCO films grown on vicinal SrTiO3 substrates was investigated by electrical transport measurements along and across the steps of the SrTiO3 surface for a range of temperatures of 10 K to 85 K and in applied magnetic fields varying from 0 to 14 T. For vicinal angles of 4 and 8 degrees, we found evidence of enhanced pinning in the longitudinal direction at low magnetic fields for a wide region of temperatures and attribute this phenome...
April 13, 2004
We have studied nodal tunneling into YBa2Cu3O7-x (YBCO) films under magnetic fields. The films' orientation was such that the CuO2 planes were perpendicular to the surface with the a and b axis at 450 form the normal. The magnetic field was applied parallel to the surface and perpendicular to the CuO2 planes. The Zero Bias Conductance Peak (ZBCP) characteristic of nodal tunneling splits under the effect of surface currents produced by the applied fields. Measuring this splitt...
April 17, 2007
Dissipation-free current transport in high-temperature superconductors is one of the most crucial properties of this class of materials which is directly related to the effective inhibition of flux line movement by defect structures. In this respect epitaxially grown thin films of YBa2Cu3O7-d (YBCO) are proving to be the strongest candidates for many widescale applications that are close to realization. We show that the relation between different defect structures and flux li...
November 26, 2010
High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries-the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here, we report that High critical temperature iron pnictide superconductors have advantages over cuprates with...
June 27, 2000
Low-angle grain boundaries with misorientation angles theta < 5 degrees in optimally doped thin films of YBCO are investigated by magnetooptical imaging. By using a numerical inversion scheme of Biot-Savart's law the critical current density across the grain boundary can be determined with a spatial resolution of about 5 micrometers. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies...
May 24, 2006
We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and the normal state resistivity curve measured after successive ion milling of ~ 1 um thick high Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTS). Contrary to many rece...
October 4, 2005
The dependence of the critical current density Jc on hydrostatic pressure to 0.6 GPa is determined for a single 25-degree [001]-tilt grain boundary in a bicrystalline ring of nearly optimally doped melt-textured YBa2Cu3Ox. Jc is found to increase rapidly under pressure at +20 %/GPa. A new diagnostic method is introduced (pressure-induced Jc relaxation) which reveals a sizeable concentration of vacant oxygen sites in the grain boundary region. Completely filling such sites wit...