April 22, 2001
Similar papers 3
May 21, 2003
We study the insulator-superfluid transition of spin-1 bosons in an optical lattice in a uniform magnetic field. Based on a mean-field approximation we obtained a zero-temperature phase diagram. We found that depending on the particle number the transition for bosons with antiferromagnetic interaction may occur into different superfluid phases with spins aligned along or opposite to the field direction. This is qualitatively different from the field-free transition for which ...
November 12, 2004
We investigate the superfluid--Mott-insulator quantum phase transition of spin-1 bosons in an optical lattice created by pairs of counterpropagating linearly polarized laser beams, driving an $F_g=1$ to $F_e=1$ internal atomic transition. The whole parameter space of the resulting two-component Bose-Hubbard model is studied. We find that the phase transition is not always second order as in the case of spinless bosons, but can be first order in certain regions of the paramete...
June 8, 2003
We consider insulating phases of cold spin-1 bosonic particles with antiferromagnetic interactions, such as Na-23, in optical lattices. We show that spin-exchange interactions give rise to several distinct phases, which differ in their spin correlations. In two- and three- dimensional lattices insulating phases with odd number of particles per site are always nematic. For insulating states with even number of particles per site there is always a spin-singlet phase and there m...
June 27, 2003
We have investigated spin singlet Mott states of spin-one bosons with antiferromagnetic interactions. These spin singlet states do not break rotational symmetry and exhibit remarkably different macroscopic properties compared with nematic Mott states of spin-one bosons. We demonstrate that the dynamics of spin singlet Mott states is fully characterized by even- and odd-class quantum dimer models. The difference between spin singlet Mott states for even and odd numbers of atom...
January 14, 2015
We explore the properties of bosonic atoms loaded into the d bands of an isotropic square optical lattice. Following the recent experimental success reported in [Y. Zhai et al., Phys. Rev. A 87, 063638 (2013)], in which populating d bands with a 99% fidelity was demonstrated, we present a theoretical study of the possible phases that can appear in this system. Using the Gutzwiller ansatz for the three d band orbitals we map the boundaries of the Mott insulating phases. For no...
May 26, 1998
The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described by a Bose-Hubbard model where the system parameters are controlled by laser light. We study the continuous (zero temperature) quantum phase transition from the superfluid to the Mott insulator phase induced by varying the depth of the optical potential, where the Mott insulator phase corresponds to a commensurate filling of the lattice (``optical crystal''). Examples for formation ...
August 17, 2009
In this work we analyze a particular setup with ultracold atoms trapped in state-dependent lattices. We show that any asymmetry in the contact interaction translates into one of two classes of correlated hopping. After deriving the effective lattice Hamiltonian for the atoms, we obtain analytically and numerically the different phases and quantum phase transitions. We find for weak correlated hopping both Mott insulators and charge density waves, while for stronger correlated...
January 2, 2018
We experimentally demonstrate that combining a cubic optical lattice with a spinor Bose-Einstein condensate substantially relaxes three strict constraints and brings spin singlets of ultracold spin-1 atoms into experimentally accessible regions. About 80 percent of atoms in the lattice-confined spin-1 spinor condensate are found to form spin singlets, immediately after the atoms cross first-order superfluid to Mott-insulator phase transitions in a microwave dressing field. A ...
December 14, 2013
Synthetic spin-orbit coupling in ultracold atomic gases can be taken to extremes rarely found in solids. We study a two dimensional Hubbard model of bosons in an optical lattice in the presence of spin-orbit coupling strong enough to drive direct transitions from Mott insulators to superfluids. Here we find phase-modulated superfluids with finite momentum that are generated entirely by spin-orbit coupling. We investigate the rich phase patterns of the superfluids, which may b...
December 19, 2001
The ground state of dipolar bosons placed in an optical lattice is analyzed. We show that the modification of experimentally accessible parameters can lead to the realization and control of different quantum phases, including superfluid, supersolid, Mott insulator, checkerboard, and collapse phases.