November 10, 2018
We report on the first measurement of the Seebeck coefficient in a tunnel-contacted and gate-tunable individual single-quantum dot junction in the Kondo regime, fabricated using the electromigration technique. This fundamental thermoelectric parameter is obtained by directly monitoring the magnitude of the voltage induced in response to a temperature difference across the junction, while keeping a zero net tunneling current through the device. In contrast to bulk materials an...
April 10, 2019
The quest for good thermoelectric materials and/or high-efficiency thermoelectric devices is of primary importance from theoretical and practical points of view. Low-dimensional structures with quantum dots or molecules are promising candidates to achieve the goal. Interactions between electrons, far-from-equilibrium conditions and strongly non-linear transport are important factors affecting the usefulness of the devices. This paper analyses the thermoelectric power of a two...
November 21, 2014
The thermoelectric voltage of a quantum dot connected to leads is calculated using the scattering R-matrix method. Our approach takes into account a temperature gradient between the contacts beyond the linear regime. We obtain sign changes of the thermopower when varying the temperature or the chemical potential around the resonances. The influence of the coupling strength of the contacts and of the thermoelectric field on the thermoelectric voltage is discussed.
June 11, 2021
The Wiedemann-Franz law states that the charge conductance and the electronic contribution to the heat conductance are proportional. This sets stringent constraints on efficiency bounds for thermoelectric applications, which seek for large charge conduction in response to a small heat flow. We present experiments based on a quantum dot formed inside a semiconducting InAs nanowire transistor, in which the heat conduction can be tuned significantly below the Wiedemann-Franz pre...
November 19, 2013
We investigate the finite-frequency thermal transport through a quantum dot subject to strong interactions, by providing an exact, nonperturbative formalism that allows us to carry out a systematic analysis of the thermopower at any frequency. Special emphasis is put on the dc and high-frequency limits. We demonstrate that, in the Kondo regime, the ac thermopower is characterized by a universal function that we determine numerically.
August 22, 2013
Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.
October 19, 2019
Signatures of the Kondo effect in the electrical conductance of strongly correlated quantum dots are well understood both experimentally and theoretically, while those in the thermopower have been the subject of recent interest. Here, we extend theoretical work [T. A. Costi, Phys. Rev. B {\bf 100}, 161106(R) (2019)] on the field-dependent thermopower of such systems, and carry out calculations in order to address a recent experiment on the field dependent thermoelectric respo...
July 25, 2012
We investigate the time evolution of the thermopower in a vibrating quantum dot suddenly shifted into the Kondo regime via a gate voltage by adopting the time-dependent non-crossing approximation and linear response Onsager relations. Behaviour of the instantaneous thermopower is studied for a range of temperatures both in zero and strong electron-phonon coupling. We argue that inverse of the saturation value of decay time of thermopower to its steady state value might be an ...
January 21, 2011
We investigate with the aid of numerical renormalization group techniques the thermoelectric properties of a molecular quantum dot described by the negative-U Anderson model. We show that the charge Kondo effect provides a mechanism for enhanced thermoelectric power via a correlation induced asymmetry in the spectral function close to the Fermi level. We show that this effect results in a dramatic enhancement of the Kondo induced peak in the thermopower of negative-U systems ...
October 3, 2011
Quantum dots are an important model system for thermoelectric phenomena, and may be used to enhance the thermal-to-electric energy conversion efficiency in functional materials. It is therefore important to obtain a detailed understanding of a quantum-dot's thermopower as a function of the Fermi energy. However, so far it has proven difficult to take effects of co-tunnelling into account in the interpretation of experimental data. Here we show that a single-electron tunnellin...