May 25, 2001
Similar papers 4
November 14, 2007
We report on experimental data of the three-dimensional bulk Fermi surfaces of the layered strongly correlated Ca1.5Sr0.5RuO4 system. The measurements have been performed by means of hn-depndent bulk-sensitive soft x-ray angle-resolved photoemission technique. Our experimental data evinces the bulk Fermi surface topology at kz~0 to be qualitatively different from the one observed by surface-sensitive low-energy ARPES. Furthermore, stronger kz dispersion of the circle-like gam...
July 10, 2020
It was recently discovered that a conductive, metallic state is formed on the surface of some insulating oxides. Firstly observed on SrTiO$_3$(001), it was then found in other compounds as diverse as anatase TiO$_2$, KTaO$_3$, BaTiO$_3$, ZnO, and also on different surfaces of SrTiO$_3$ (or other oxides) with different symmetries. The spatial extension of the wave function of this electronic state is of only a few atomic layers. Experiments indicate its existence is related to...
November 27, 2015
Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements performed on the two-dimensional electronic states confined near the (001) surface of SrTiO$_3$ in the presence of oxygen vacancies, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is in- c...
May 27, 2014
We report the existence of confined electronic states at the (110) and (111) surfaces of SrTiO3. Using angle-resolved photoemission spectroscopy, we find that the corresponding Fermi surfaces, subband masses, and orbital ordering are different from the ones at the (001) surface of SrTiO3. This occurs because the crystallographic symmetries of the surface and sub-surface planes, and the electron effective masses along the confinement direction, influence the symmetry of the el...
December 9, 2013
Carrying a large, pure spin magnetic moment of 7 $\mu$bohr/atom in the half-filled 4f shell, divalent europium is an outstanding element for assembling novel magnetic devices in which a two-dimensional electron gas (2DEG) is polarized due to exchange interaction with an underlying magnetically-active Eu layer, even in the absence of a magnetic field. A natural example for such geometry is the intermetallic layered material EuRh$_2$Si$_2$, in which magnetically active layers o...
August 5, 2016
Double-layered Sr3Ru2O7 has received phenomenal consideration because it exhibits a plethora of exotic phases when perturbed. New phases emerge with the application of pressure, magnetic field, or doping. Here we show that creating a surface is an alternative and effective way to reveal hidden phases that are different from those seen in the bulk by investigating the surface properties of Sr3(Ru1-xMnx)2O7. Driven by the tilt distortion of RuO6 octahedra, the surface of Sr3Ru2...
April 30, 2020
In strongly correlated electron materials, the electronic, spin, and charge degrees of freedom are closely intertwined. This often leads to the stabilization of emergent orders that are highly sensitive to external physical stimuli promising opportunities for technological applications. In perovskite ruthenates, this sensitivity manifests in dramatic changes of the physical properties with subtle structural details of the RuO$_6$ octahedra, stabilizing enigmatic correlated gr...
March 24, 2006
Nowadays it has become feasible to perform angle-resolved photoemission spectroscopy (ARPES) measurements of transition-metal oxides with three-dimensional perovskite structures owing to the availability of high-quality single crystals of bulk and epitaxial thin films. In this article, we review recent experimental results and interpretation of ARPES data using empirical tight-binding band-structure calculations. Results are presented for SrVO$_3$ (SVO) bulk single crystals, ...
February 22, 2016
We study the effect of oxygen vacancies on the electronic structure of the model strongly correlated metal SrVO$_3$. By means of angle-resolved photoemission (ARPES) synchrotron experiments, we investigate the systematic effect of the UV dose on the measured spectra. We observe the onset of a spurious dose-dependent prominent peak at an energy range were the lower Hubbard band has been previously reported in this compound, raising questions on its previous interpretation. By ...
August 12, 2005
We present detailed energy dispersions near the Fermi level on the monolayer perovskite ruthenate Sr2RuO4, determined by high-resolution angle-resolved photoemission spectroscopy. An orbital selectivity of the kink in the dispersion of Sr2RuO4 has been found: A kink for the Ru 4d_xy orbital is clearly observed, but not for the Ru 4d_yz and 4d_zx ones. The result provides insight into the origin of the kink.