September 26, 2008
Although most networks in nature exhibit complex topology the origins of such complexity remains unclear. We introduce a model of a growing network of interacting agents in which each new agent's membership to the network is determined by the agent's effect on the network's global stability. It is shown that out of this stability constraint, scale free networks emerges in a self organized manner, offering an explanation for the ubiquity of complex topological properties obser...
June 18, 2013
Complex networks are now being studied in a wide range of disciplines across science and technology. In this paper we propose a method by which one can probe the properties of experimentally obtained network data. Rather than just measuring properties of a network inferred from data, we aim to ask how typical is that network? What properties of the observed network are typical of all such scale free networks, and which are peculiar? To do this we propose a series of methods t...
October 13, 2011
Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting require...
June 14, 2006
In this paper we describe the emergence of scale-free degree distributions from statistical mechanics principles. We define an energy associated to a degree sequence as the logarithm of the number of indistinguishable simple networks it is possible to draw given the degree sequence. Keeping fixed the total number of nodes and links, we show that the energy of scale-free distribution is much higher than the energy associated to the degree sequence of regular random graphs. Thi...
May 2, 2011
Extensive researches have been dedicated to investigating the performance of real networks and synthetic networks against random failures or intentional attack guided by degree (degree attack). Degree is one of straightforward measures to characterize the vitality of a vertex in maintaining the integrity of the network but not the only one. Damage, the decrease of the largest component size that was caused by the removal of a vertex, intuitively is a more destructive guide fo...
November 5, 2007
I start by reviewing some basic properties of random graphs. I then consider the role of random walks in complex networks and show how they may be used to explain why so many long tailed distributions are found in real data sets. The key idea is that in many cases the process involves copying of properties of near neighbours in the network and this is a type of short random walk which in turn produce a natural preferential attachment mechanism. Applying this to networks of fi...
May 31, 2013
The concept of scale-free networks has been widely applied across natural and physical sciences. Many claims are made about the properties of these networks, even though the concept of scale-free is often vaguely defined. We present tools and procedures to analyse the statistical properties of networks defined by arbitrary degree distributions and other constraints. Doing so reveals the highly likely properties, and some unrecognised richness, of scale-free networks, and cast...
June 4, 2002
The small-world phenomenon in complex networks has been identified as being due to the presence of long-range links, i.e., links connecting nodes that would otherwise be separated by a long node-to-node distance. We find, surprisingly, that many scale-free networks are more sensitive to attacks on short-range than on long-range links. This result, besides its importance concerning network efficiency and/or security, has the striking implication that the small-world property o...
August 12, 2014
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in comple...
June 20, 2010
In this review we establish various connections between complex networks and symmetry. While special types of symmetries (e.g., automorphisms) are studied in detail within discrete mathematics for particular classes of deterministic graphs, the analysis of more general symmetries in real complex networks is far less developed. We argue that real networks, as any entity characterized by imperfections or errors, necessarily require a stochastic notion of invariance. We therefor...