April 7, 2008
The recent discovery of universal principles underlying many complex networks occurring across a wide range of length scales in the biological world has spurred physicists in trying to understand such features using techniques from statistical physics and non-linear dynamics. In this paper, we look at a few examples of biological networks to see how similar questions can come up in very different contexts. We review some of our recent work that looks at how network structure ...
December 29, 2009
Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a su...
June 18, 2013
Complex networks are now being studied in a wide range of disciplines across science and technology. In this paper we propose a method by which one can probe the properties of experimentally obtained network data. Rather than just measuring properties of a network inferred from data, we aim to ask how typical is that network? What properties of the observed network are typical of all such scale free networks, and which are peculiar? To do this we propose a series of methods t...
October 13, 2011
Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting require...
November 5, 2007
I start by reviewing some basic properties of random graphs. I then consider the role of random walks in complex networks and show how they may be used to explain why so many long tailed distributions are found in real data sets. The key idea is that in many cases the process involves copying of properties of near neighbours in the network and this is a type of short random walk which in turn produce a natural preferential attachment mechanism. Applying this to networks of fi...
June 4, 2002
The small-world phenomenon in complex networks has been identified as being due to the presence of long-range links, i.e., links connecting nodes that would otherwise be separated by a long node-to-node distance. We find, surprisingly, that many scale-free networks are more sensitive to attacks on short-range than on long-range links. This result, besides its importance concerning network efficiency and/or security, has the striking implication that the small-world property o...
February 6, 2025
This paper presents a versatile model for generating fractal complex networks that closely mirror the properties of real-world systems. By combining features of reverse renormalization and evolving network models, the proposed approach introduces several tunable parameters, offering exceptional flexibility in capturing the diverse topologies and scaling behaviors found in both natural and man-made networks. The model effectively replicates their key characteristics such as fr...
August 12, 2014
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in comple...
May 2, 2011
Extensive researches have been dedicated to investigating the performance of real networks and synthetic networks against random failures or intentional attack guided by degree (degree attack). Degree is one of straightforward measures to characterize the vitality of a vertex in maintaining the integrity of the network but not the only one. Damage, the decrease of the largest component size that was caused by the removal of a vertex, intuitively is a more destructive guide fo...
June 20, 2010
In this review we establish various connections between complex networks and symmetry. While special types of symmetries (e.g., automorphisms) are studied in detail within discrete mathematics for particular classes of deterministic graphs, the analysis of more general symmetries in real complex networks is far less developed. We argue that real networks, as any entity characterized by imperfections or errors, necessarily require a stochastic notion of invariance. We therefor...