January 27, 2005
Inspired by scientific collaboration networks, especially our empirical analysis of the network of econophysicists, an evolutionary model for weighted networks is proposed. Both degree-driven and weight-driven models are considered. Compared with the BA model and other evolving models with preferential attachment, there are two significant generalizations. First, besides the new vertex added in at every time step, old vertices can also attempt to build up new links, or to rec...
June 7, 2002
Approaches from statistical physics are applied to investigate the structure of network models whose growth rules mimic aspects of the evolution of the world-wide web. We first determine the degree distribution of a growing network in which nodes are introduced one at a time and attach to an earlier node of degree k with rate A_ksim k^gamma. Very different behaviors arise for gamma<1, gamma=1, and gamma>1. We also analyze the degree distribution of a heterogeneous network, th...
November 8, 2005
We proposed an evolving network model constituted by the same nodes but different edges. The competition between nodes and different links were introduced. Scale free properties have been found in this model by continuum theory. Different network topologies can be generated by some tunable parameters. Simulation results consolidate the prediction.
September 1, 2020
Network science provides an indispensable theoretical framework for studying the structure and function of real complex systems. Different network models are often used for finding the rules that govern their evolution, whereby the correct choice of model details is crucial for obtaining relevant insights. We here study how the structure of networks generated with the aging nodes model depends on the properties of the growth signal. We use different fluctuating signals and co...
March 12, 2008
In spite of its relevance to the origin of complex networks, the interplay between form and function and its role during network formation remains largely unexplored. While recent studies introduce dynamics by considering rewiring processes of a pre-existent network, we study network growth and formation by proposing an evolutionary preferential attachment model, its main feature being that the capacity of a node to attract new links depends on a dynamical variable governed i...
December 3, 2006
At the eight-year anniversary of Watts & Strogatz's work on the collective dynamics of small-world networks and seven years after Barabasi & Albert's discovery of scale-free networks, the area of dynamical processes on complex networks is at the forefront of the current research on nonlinear dynamics and complex systems. This volume brings together a selection of original contributions in complementary topics of statistical physics, nonlinear dynamics and biological sciences,...
January 2, 2013
There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the unde...
April 20, 2008
The mutual influence of dynamics and structure is a central issue in complex systems. In this paper we study by simulation slow evolution of network under the feedback of a local-majority-rule opinion process. If performance-enhancing local mutations have higher chances of getting integrated into its structure, the system can evolve into a highly heterogeneous small-world with a global hub (whose connectivity is proportional to the network size), strong local connection corre...
November 12, 2001
Many complex systems can be described in terms of networks of interacting units. Recent studies have shown that a wide class of both natural and artificial nets display a surprisingly widespread feature: the presence of highly heterogeneous distributions of links, providing an extraordinary source of robustness against perturbations. Although most theories concerning the origin of these topologies use growing graphs, here we show that a simple optimization process can also ac...
April 27, 2007
The science of complex networks is a new interdisciplinary branch of science which has arisen recently on the interface of physics, biology, social and computer sciences, and others. Its main goal is to discover general laws governing the creation and growth as well as processes taking place on networks, like e.g. the Internet, transportation or neural networks. It turned out that most real-world networks cannot be simply reduced to a compound of some individual components. F...