July 14, 2001
Similar papers 3
May 8, 2017
In recent years important progress has been achieved towards proving the validity of the replica predictions for the (asymptotic) mutual information (or "free energy") in Bayesian inference problems. The proof techniques that have emerged appear to be quite general, despite they have been worked out on a case-by-case basis. Unfortunately, a common point between all these schemes is their relatively high level of technicality. We present a new proof scheme that is quite straig...
January 7, 2020
We consider a channel with a binary input X being corrupted by a continuous-valued noise that results in a continuous-valued output Y. An optimal binary quantizer is used to quantize the continuous-valued output Y to the final binary output Z to maximize the mutual information I(X; Z). We show that when the ratio of the channel conditional density r(y) = P(Y=y|X=0)/ P(Y =y|X=1) is a strictly increasing/decreasing function of y, then a quantizer having a single threshold can m...
May 18, 2022
Inverse probability problems whose generative models are given by strictly nonlinear Gaussian random fields show the all-or-nothing behavior: There exists a critical rate at which Bayesian inference exhibits a phase transition. Below this rate, the optimal Bayesian estimator recovers the data perfectly, and above it the recovered data becomes uncorrelated. This study uses the replica method from the theory of spin glasses to show that this critical rate is the channel capacit...
March 24, 2014
We take an information theoretic perspective on a classical sparse-sampling noisy linear model and present an analytical expression for the mutual information, which plays central role in a variety of communications/processing problems. Such an expression was addressed previously either by bounds, by simulations and by the (non-rigorous) replica method. The expression of the mutual information is based on techniques used in [1], addressing the minimum mean square error (MMSE)...
April 15, 2020
We consider the problem of estimating a rank-one nonsymmetric matrix under additive white Gaussian noise. The matrix to estimate can be written as the outer product of two vectors and we look at the special case in which both vectors are uniformly distributed on spheres. We prove a replica-symmetric formula for the average mutual information between these vectors and the observations in the high-dimensional regime. This goes beyond previous results which considered vectors wi...
December 25, 2007
In this paper, we address the problem of how many randomly labeled patterns can be correctly classified by a single-layer perceptron when the patterns are correlated with each other. In order to solve this problem, two analytical schemes are developed based on the replica method and Thouless-Anderson-Palmer (TAP) approach by utilizing an integral formula concerning random rectangular matrices. The validity and relevance of the developed methodologies are shown for one known r...
March 7, 2019
End-to-end deep learning for communication systems, i.e., systems whose encoder and decoder are learned, has attracted significant interest recently, due to its performance which comes close to well-developed classical encoder-decoder designs. However, one of the drawbacks of current learning approaches is that a differentiable channel model is needed for the training of the underlying neural networks. In real-world scenarios, such a channel model is hardly available and ofte...
August 29, 2007
A framework to analyze inference performance in densely connected single-layer feed-forward networks is developed for situations where a given data set is composed of correlated patterns. The framework is based on the assumption that the left and right singular value bases of the given pattern matrix are generated independently and uniformly from Haar measures. This assumption makes it possible to characterize the objective system by a single function of two variables which i...
July 3, 2019
The ability to understand and solve high-dimensional inference problems is essential for modern data science. This article examines high-dimensional inference problems through the lens of information theory and focuses on the standard linear model as a canonical example that is both rich enough to be practically useful and simple enough to be studied rigorously. In particular, this model can exhibit phase transitions where an arbitrarily small change in the model parameters c...
March 1, 2002
In a recent work we have introduced a novel approach to study the effect of weak non-linearities in the transfer function on the information transmitted by an analogue channel, by means of a perturbative diagrammatic expansion. We extend here the analysis to all orders in perturbation theory, which allows us to release any constraint concerning the magnitude of the expansion parameter and to establish the rules to calculate easily the contribution at any order. As an example ...