October 1, 2001
Similar papers 3
April 4, 2002
In many real growing networks the mean number of connections per vertex increases with time. The Internet, the Word Wide Web, collaboration networks, and many others display this behavior. Such a growth can be called {\em accelerated}. We show that this acceleration influences distribution of connections and may determine the structure of a network. We discuss general consequences of the acceleration and demonstrate its features applying simple illustrating examples. In parti...
April 29, 2015
How universal is human conceptual structure? The way concepts are organized in the human brain may reflect distinct features of cultural, historical, and environmental background in addition to properties universal to human cognition. Semantics, or meaning expressed through language, provides direct access to the underlying conceptual structure, but meaning is notoriously difficult to measure, let alone parameterize. Here we provide an empirical measure of semantic proximity ...
July 19, 2016
Information content (IC) based measures for finding semantic similarity is gaining preferences day by day. Semantics of concepts can be highly characterized by information theory. The conventional way for calculating IC is based on the probability of appearance of concepts in corpora. Due to data sparseness and corpora dependency issues of those conventional approaches, a new corpora independent intrinsic IC calculation measure has evolved. In this paper, we mainly focus on s...
September 19, 2007
The phenomenon of human language is widely studied from various points of view. It is interesting not only for social scientists, antropologists or philosophers, but also for those, interesting in the network dynamics. In several recent papers word web, or language as a graph has been investigated. In this paper I revise recent studies of syntactical word web. I present a model of growing network in which such processes as node addition, edge rewiring and new link creation ...
April 13, 2023
Semantic networks provide a useful tool to understand how related concepts are retrieved from memory. However, most current network approaches use pairwise links to represent memory recall patterns. Pairwise connections neglect higher-order associations, i.e. relationships between more than two concepts at a time. These higher-order interactions might covariate with (and thus contain information about) how similar concepts are along psycholinguistic dimensions like arousal, v...
September 14, 1998
This paper presents the results of using Roget's International Thesaurus as the taxonomy in a semantic similarity measurement task. Four similarity metrics were taken from the literature and applied to Roget's The experimental evaluation suggests that the traditional edge counting approach does surprisingly well (a correlation of r=0.88 with a benchmark set of human similarity judgements, with an upper bound of r=0.90 for human subjects performing the same task.)
December 4, 2015
Many real systems have been modelled in terms of network concepts, and written texts are a particular example of information networks. In recent years, the use of network methods to analyze language has allowed the discovery of several interesting findings, including the proposition of novel models to explain the emergence of fundamental universal patterns. While syntactical networks, one of the most prevalent networked models of written texts, display both scale-free and sma...
February 14, 2020
This paper connects a series of papers dealing with taxonomic word embeddings. It begins by noting that there are different types of semantic relatedness and that different lexical representations encode different forms of relatedness. A particularly important distinction within semantic relatedness is that of thematic versus taxonomic relatedness. Next, we present a number of experiments that analyse taxonomic embeddings that have been trained on a synthetic corpus that has ...
December 16, 2008
Two well-known databases of semantic relationships between pairs of words used in psycholinguistics, feature-based and association-based, are studied as complex networks. We propose an algorithm to disentangle feature based relationships from free association semantic networks. The algorithm uses the rich topology of the free association semantic network to produce a new set of relationships between words similar to those observed in feature production norms.
October 16, 2014
In this paper we provide a quantitative framework for the study of phonological networks (PNs) for the English language by carrying out principled comparisons to null models, either based on site percolation, randomization techniques, or network growth models. In contrast to previous work, we mainly focus on null models that reproduce lower order characteristics of the empirical data. We find that artificial networks matching connectivity properties of the English PN are exce...