October 27, 2001
Similar papers 5
July 14, 2005
We discuss two sampling schemes for selecting random subnets from a network: Random sampling and connectivity dependent sampling, and investigate how the degree distribution of a node in the network is affected by the two types of sampling. Here we derive a necessary and sufficient condition that guarantees that the degree distribution of the subnet and the true network belong to the same family of probability distributions. For completely random sampling of nodes we find tha...
July 5, 1999
Random networks with complex topology are common in Nature, describing systems as diverse as the world wide web or social and business networks. Recently, it has been demonstrated that most large networks for which topological information is available display scale-free features. Here we study the scaling properties of the recently introduced scale-free model, that can account for the observed power-law distribution of the connectivities. We develop a mean-field method to pre...
June 24, 2002
1. Basic constructions. 2. Equilibrium and nonequilibrium networks. 3. Equilibrium uncorrelated networks. 4. Nonequilibrium nongrowing scale-free nets. 5. Types of correlations. 6. When pair correlations are important. 7. When loops are important. 8. Pair degree-degree correlations in growing networks. 9. How to construct an equilibrium net with given degree-degree correlations. 10. How to construct a growing scale-free net with a given clustering (towards a real-space renorm...
June 29, 2018
Sampling random graphs is essential in many applications, and often algorithms use Markov chain Monte Carlo methods to sample uniformly from the space of graphs. However, often there is a need to sample graphs with some property that we are unable, or it is too inefficient, to sample using standard approaches. In this paper, we are interested in sampling graphs from a conditional ensemble of the underlying graph model. We present an algorithm to generate samples from an ensem...
September 8, 2020
We describe a new method for the random sampling of connected networks with a specified degree sequence. We consider both the case of simple graphs and that of loopless multigraphs. The constraints of fixed degrees and of connectedness are two of the most commonly needed ones when constructing null models for the practical analysis of physical or biological networks. Yet handling these constraints, let alone combining them, is non-trivial. Our method builds on a recently intr...
March 17, 2003
It has been argued that the observed anticorrelation between the degrees of adjacent vertices in the network representation of the Internet has its origin in the restriction that no two vertices have more than one edge connecting them. Here we introduce a formalism for modeling ensembles of graphs with single edges only and derive values for the exponents and correlation coefficients characterizing them. Our results confirm that the conjectured mechanism does indeed give rise...
June 30, 2006
Real-world social and economic networks typically display a number of particular topological properties, such as a giant connected component, a broad degree distribution, the small-world property and the presence of communities of densely interconnected nodes. Several models, including ensembles of networks also known in social science as Exponential Random Graphs, have been proposed with the aim of reproducing each of these properties in isolation. Here we define a generaliz...
March 21, 2003
We propose and investigate a unifying class of sparse random graph models, based on a hidden coloring of edge-vertex incidences, extending an existing approach, Random graphs with a given degree distribution, in a way that admits a nontrivial correlation structure in the resulting graphs. The approach unifies a number of existing random graph ensembles within a common general formalism, and allows for the analytic calculation of observable graph characteristics. In partic...
December 7, 2015
We introduce a class of random graphs that we argue meets many of the desiderata one would demand of a model to serve as the foundation for a statistical analysis of real-world networks. The class of random graphs is defined by a probabilistic symmetry: invariance of the distribution of each graph to an arbitrary relabelings of its vertices. In particular, following Caron and Fox, we interpret a symmetric simple point process on $\mathbb{R}_+^2$ as the edge set of a random gr...
May 10, 2010
Traditional random graph models of networks generate networks that are locally tree-like, meaning that all local neighborhoods take the form of trees. In this respect such models are highly unrealistic, most real networks having strongly non-tree-like neighborhoods that contain short loops, cliques, or other biconnected subgraphs. In this paper we propose and analyze a new class of random graph models that incorporates general subgraphs, allowing for non-tree-like neighborhoo...