February 20, 2002
Similar papers 4
February 17, 2005
In this paper an experimental study of the interaction of hydrogen molecules with gold nanowires is presented. Our results show, that chains of Au atoms can also be pulled in hydrogen environment, however in this case the conductance of the chain is strongly reduced compared to the perfect transmission of pure Au chains. The comparison of our experiments with recent theoretical prediction for the hydrogen welding of Au nanowires implies that a hydrogen molecule can even be in...
July 29, 2015
First principle calculations of the conductance of gold wires containing 3-8 atoms each with 2.39 {\AA} bond length were performed using density functional theory. Three different configuration of wire/electrodes were used. For zigzag wire with semi-infinite crystalline electrodes, even-odd oscillation is observed which is consistent with the previously reported results. A lower conductance was observed for the chain in semi-infinite crystalline electrodes compared to the cha...
March 11, 2003
We induce superconductivity by proximity effect in thin layers of gold and study the number of conduction channels which contribute to the current in one-atom contacts and atomic wires. The atomic contacts and wires are fabricated with a Scanning Tunneling Microscope. The set of transmission probabilities of the conduction channels is obtained from the analysis of the $I(V)$ characteristic curve which is highly non-linear due to multiple Andreev reflections. In agreement with...
May 16, 1999
Using first principles density functional calculations, gold monatomic wires are found to exhibit a zigzag shape which remains under tension, becoming linear just before breaking. At room temperature they are found to spin, what explains the extremely long apparent interatomic distances shown by electron microscopy.The zigzag structure is stable if the tension is relieved, the wire holding its chainlike shape even as a free-standing cluster. This unexpected metallic-wire stif...
October 9, 2008
Gold-molecule-gold junctions can be formed by carefully breaking a gold wire in a solution containing dithiolated molecules. Surprisingly, there is little understanding on the mechanical details of the bridge formation process and specifically on the role that the dithiol molecules play themselves. We propose that alkanedithiol molecules have already formed bridges between the gold electrodes before the atomic gold-gold junction is broken. This leads to stabilization of the s...
February 26, 2007
We present results on electromigrated Au nanojunctions broken near the conductance quantum $77.5 \mu$S. At room temperature we find that wires, initially narrowed by an actively-controlled electromigration technique down to a few conductance quanta, continue to narrow after removing the applied voltage. Separate electrodes form as mobile gold atoms continuously reconfigure the constriction. We find, from results obtained on over 300 samples, no evidence for gold cluster forma...
April 17, 2013
We have studied experimentally the phenomena of jump-to-contact (JC) and jump-out-of-contact (JOC) in gold electrodes. JC can be observed at the first contact when the two metals approach each other while JOC occurs in the last contact before breaking. When the indentation depth between the electrodes is limited to a certain value of conductance, a highly reproducible behaviour in the evolution of the conductance can be obtained for hundreds of cycles of formation and rupture...
August 23, 2006
We present series of first-principles calculations for both pure and hydrogen contaminated gold wire systems in order to investigate how such impurities can be detected. We show how a single H atom or a single H2 molecule in an atomic gold wire will affect forces and Au-Au atom distances under elongation. We further determine the corresponding evolution of the low-bias conductance as well as the inelastic contributions from vibrations. Our results indicate that the conductanc...
November 22, 2013
Spin-density-functional calculations of tip-suspended gold chains, with molecular oxygen, or dissociated oxygen atoms, incorporated in them, reveal structural transitions for varying lengths. The nanowires exhibit enhanced strength for both oxygen incorporation modes, and upon stretching tip atoms join the wire. With incorporated molecular oxygen the wire conductance is about 1(2e2/h), transforming to an insulating state beyond a critical length. The nanowire conductance with...
October 11, 2005
We study electronic and topographic properties of the Si(335) surface, containing Au wires parallel to the steps. We use scanning tunneling microscopy (STM) supplemented by reflection of high energy electron diffraction (RHEED) technique. The STM data show the space and voltage dependent oscillations of the distance between STM tip and the surface which can be explained within one band tight binding Hubbard model. We calculate the STM current using nonequilibrium Keldysh Gree...