July 19, 2021
We use a reactive Monte Carlo simulation method and primitive model of electrolyte to study acid-base equilibrium that controls charge regulation in colloidal systems. The simulations are performed in a semi-grand canonical ensemble in which colloidal suspension is in contact with a reservoir of salt and strong acid. The interior of colloidal particles is modeled as a low dielectric medium, different from the surrounding water. The effective colloidal charge is calculated for...
November 14, 1998
Constant temperature molecular dynamics simulations were used to study solutions of flexible polyelectrolyte chains at nonzero concentrations with explicit counterions and unscreened coulombic interactions. Counterion condensation, measured via the self-diffusion coefficient of the counterions, is found to increase with polymer concentration, but contrary to the prediction of Manning theory, the renormalized charge fraction on the chains decreases with increasing Bjerrum leng...
August 1, 2016
A proper treatment of electrostatic interactions is crucial for the accurate calculation of forces in computer simulations. Electrostatic interactions are typically modeled using Ewald based methods, which have become one of the cornerstones upon which many other methods for the numerical computation of electrostatic interactions are based. However, their use with charge distributions rather than point charges requires the inclusion of ansatz for the solutions of the Poisson ...
September 27, 2007
The dynamic behavior of polyelectrolyte chains in the oligomer range is investigated with coarse-grained molecular dynamics simulation and compared to data obtained by two different experimental methods, namely capillary electrophoresis and electrophoresis NMR. We find excellent agreement of experiments and simulations when hydrodynamic interactions are accounted for in the simulations. We show that the electrophoretic mobility exhibits a maximum in the oligomer range and for...
August 2, 2005
The behavior of highly charged short rod-like polyelectrolytes near oppositely charged planar surfaces is investigated by means of Monte Carlo simulations. A detailed microstructural study, including monomer and fluid charge distribution, and chain orientation, is provided. The influence of chain length, substrate's surface-charge-density and image forces is considered. Due to the lower chain-entropy (compared to flexible chains), our simulation data show that rod-like polyel...
March 23, 1999
We investigate the equilibrium charge distribution along a single annealed polyelectrolyte chain under different conditions. The coupling between the conformation of the chain and the local charge distribution is described for various solvent qualities and salt concentration. In salt free solution, we find a slight charge depletion in the central part of the chain: the charges accumulate at the ends. The effect is less important if salt is added to the solution since the char...
June 6, 2003
Using molecular dynamics simulations we study the behavior of a dilute solution of strongly charged polyelectrolytes in poor solvents, where we take counterions explicitly into account. We focus on the chain conformational properties under conditions where chain-chain interactions can be neglected, but the counterion concentration remains finite. We investigate the conformations with regard to the parameters chain length, Coulomb interaction strength, and solvent quality, and...
April 30, 2012
Using molecular dynamics simulations, it is demonstrated that monovalent counterions can induce aggregation of similarly charged rod-like polyelectrolyte chains. The critical value of the linear charge density for aggregation is shown to be close to the critical value for the extended-collapsed transition of a single flexible polyelectrolyte chain, and decreases with increasing valency of the counterions. The effective interaction potential between two rod-like polyelectrolyt...
February 10, 2002
We address the long standing problem of the dependence of the electrostatic persistence length $l_e$ of a flexible polyelectrolyte (PE) on the screening length $r_s$ of the solution within the linear Debye-Huckel theory. The standard Odijk, Skolnick and Fixman (OSF) theory suggests $l_e \propto r_s^2$, while some variational theories and computer simulations suggest $l_e \propto r_s$. In this paper, we use Monte-Carlo simulations to study the conformation of a simple polyelec...
August 19, 2008
The effect of hydrodynamic interactions on the free-solution electrophoresis of polyelectrolytes is investigated with coarse-grained molecular dynamics simulations. By comparing the results to simulations with switched-off hydrodynamic interactions, we demonstrate their importance in modelling the experimentally observed behaviour. In order to quantify the hydrodynamic interactions between the polyelectrolyte and the solution, we present a novel way to estimate its effective ...