April 22, 2002
This is a book chapter soon to appear (2002) in the "Handbook for Numerical Analysis" volume dedicated to "Computational Chemistry" edited by Claude Le Bris. The series editors are P.G. Ciarlet and J. L. Lions. [North Holland/Elservier]. This review deals with some of the methods known under the umbrella term quantum Monte Carlo (QMC), specifically those that have been most commonly used for electronic structure.
Similar papers 1
July 17, 2018
The auxiliary-field quantum Monte Carlo (AFQMC) method provides a computational framework for solving the time-independent Schroedinger equation in atoms, molecules, solids, and a variety of model systems by stochastic sampling. We introduce the theory and formalism behind this framework, briefly discuss the key technical steps that turn it into an effective and practical computational method, present several illustrative results, and conclude with comments on the prospects o...
February 10, 2020
Quantum Monte Carlo methods are first-principle approaches that approximately solve the Schr\"odinger equation stochastically. As compared to traditional quantum chemistry methods, they offer important advantages such as the ability to handle a large variety of many-body wave functions, the favorable scaling with the number of particles, and the intrinsic parallelism of the algorithms which are particularly suitable to modern massively parallel computers. In this chapter, we ...
October 23, 2007
We describe QWalk, a new computational package capable of performing Quantum Monte Carlo electronic structure calculations for molecules and solids with many electrons. We describe the structure of the program and its implementation of Quantum Monte Carlo methods. It is open-source, licensed under the GPL, and available at the web site http://www.qwalk.org
November 7, 2017
The auxiliary-field quantum Monte Carlo (AFQMC) method provides a computational framework for solving the time-independent Schroedinger equation in atoms, molecules, solids, and a variety of model systems. AFQMC has recently witnessed remarkable growth, especially as a tool for electronic structure computations in real materials. The method has demonstrated excellent accuracy across a variety of correlated electron systems. Taking the form of stochastic evolution in a manifol...
August 5, 1996
This review covers applications of quantum Monte Carlo methods to quantum mechanical problems in the study of electronic and atomic structure, as well as applications to statistical mechanical problems both of static and dynamic nature. The common thread in all these applications is optimization of many-parameter trial states, which is done by minimization of the variance of the local or, more generally for arbitrary eigenvalue problems, minimization of the variance of the co...
September 7, 2021
Digital quantum computers provide a computational framework for solving the Schr\"{o}dinger equation for a variety of many-particle systems. Quantum computing algorithms for the quantum simulation of these systems have recently witnessed remarkable growth, notwithstanding the limitations of existing quantum hardware, especially as a tool for electronic structure computations in molecules. In this review, we provide a self-contained introduction to emerging algorithms for the ...
July 29, 2022
The VB-QMC method is presented in this chapter. It consists of using in quantum Monte Carlo (QMC) approaches with a wave function expressed as a usually short expansion of classical Valence-Bond (VB) structures supplemented by a Jastrow factor to account for dynamical correlation. Two variants exist: the VB-VMC (using variational Monte Carlo) and VB-DMC (using diffusion Monte Carlo) methods. QMC algorithms circumvent the notorious non-orthogonality issue of classical VB appro...
October 24, 2010
The quantum Monte Carlo methods represent a powerful and broadly applicable computational tool for finding very accurate solutions of the stationary Schroedinger equation for atoms, molecules, solids and a variety of model systems. The algorithms are intrinsically parallel and are able to take full advantage of the present-day high-performance computing systems. This review article concentrates on the fixed-node/fixed-phase diffusion Monte Carlo method with emphasis on its ap...
November 28, 2018
Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the last decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method allows one to systematically approach the exact solution of such problems, for cases where very high accuracy is desired. The introduction of FCIQMC has subsequently led to the development of coupled cluster Mont...
July 1, 2002
Quantum Monte Carlo (QMC) methods such as Variational Monte Carlo, Diffusion Monte Carlo or Path Integral Monte Carlo are the most accurate and general methods for computing total electronic energies. We will review methods we have developed to perform QMC for the electrons coupled to a classical Monte Carlo simulation of the ions. In this method, one estimates the Born-Oppenheimer energy E(Z) where Z represents the ionic degrees of freedom. That estimate of the energy is use...