August 26, 2002
Similar papers 4
March 29, 2016
The theoretical formulation and numerical evaluation of the vertex corrections in multiorbital techniques of theories of electronic properties of random alloys are analyzed. It is shown that current approaches to static transport properties within the so-called conserving approximations lead to the inversion of a singular matrix as a direct consequence of the Ward identity relating the vertex corrections to one-particle self-energies. We propose a simple removal of the singul...
September 1, 2004
We extend the single-site coherent potential approximation (CPA) to include the effects of non-local disorder correlations (alloy short-range order) on the electronic structure of random alloy systems. This is achieved by mapping the original Anderson disorder problem to that of a selfconsistently embedded cluster. This cluster problem is then solved using the equations of motion technique. The CPA is recovered for cluster size $N_{c}=1$, and the disorder averaged density-of-...
July 13, 2017
Au-Fe alloys are of immense interest due to their biocompatibility, anomalous hall conductivity, and applications in various medical treatment. However, irrespective of the method of preparation, they often exhibit a high-level of disorder, with properties sensitive to the thermal or magnetic annealing temperatures. We calculate lattice dynamical properties of Au$_{1-x}$Fe$_x$ alloys using density functional theory methods, where, being a multisite property, reliable interato...
February 24, 2016
Phonon Monte Carlo (PMC) is a versatile stochasic technique for solving the Boltzmann transport equation for phonons. It is particularly well suited for analyzing thermal transport in structures that have real-space roughness or are too large to simulate directly using atomistic techniques. PMC hinges on the generation and use of \textit{random variates} -- specific values of the random variables that correspond to physical observables -- in a way that accurately and efficien...
December 21, 2021
Knowledge of lattice anharmonicity is essential to elucidate distinctive thermal properties in crystalline solids. Yet, accurate \textit{ab initio} investigations of lattice anharmonicity encounter difficulties owing to the cumbersome computations. Here we introduce the phonon quasiparticle approach and review its application to various materials. This method efficiently and reliably addresses lattice anharmonicity by combining \textit{ab initio} molecular dynamics and lattic...
February 25, 2011
The effect of the electron-phonon interaction on magnetization relaxation is studied within the framework of first-principles scattering theory for Fe, Co, and Ni by displacing atoms in the scattering region randomly with a thermal distribution. This "frozen thermal lattice disorder" approach reproduces the non-monotonic damping behaviour observed in ferromagnetic resonance measurements and yields reasonable quantitative agreement between calculated and experimental values. I...
April 25, 2014
The effects of doping on the spectral properties of low doped systems are investigated by means of Coherent Potential Approximation to describe the distributed disorder induced by the impurities and Phonon-Phonon Non-Crossing Approximation to characterize a wide class of electron-phonon interactions which dominate the low-energy spectral features. When disorder and electron-phonon interaction work on comparable energy scales, a strong interplay between them arises, the effect...
March 18, 2004
We present here a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us [A. Mookerjee, J. Phys. C: Solid State Phys. 6, 1340 (1973)]. We show that disorder scattering renormalizes the electron and hole propagators as well as the transition amplitude. The corrections to the transition amplitude have been shown to be related to the self-energy of the pr...
January 17, 2020
We present an ab initio theory of the spin-wave stiffness tensor for ordered and disordered itinerant ferromagnets with pair exchange interactions derived from a method of infinitesimal spin rotations. The resulting formula bears an explicit form of a linear-response coefficient which involves one-particle Green's functions and effective velocity operators encountered in a recent theory of electron transport. Application of this approach to ideal metal crystals yields more re...
November 10, 2004
In an earlier paper [K. K. Saha and A. Mookerjee, Phys. Rev. B 70 (2004) (in press) or, cond-mat/0403456] we had presented a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us [A. Mookerjee, J. Phys. C: Solid State Phys. 6, 1340 (1973)]. In this communication we shall combine our formulation with the tight-binding linear muffin-tin orbitals (TB-LMT...