October 8, 2002
The asymptotics of the equal-time one-particle Green's function for the half-filled one-dimensional Hubbard model is studied at finite temperature. We calculate its correlation length by evaluating the largest and the second largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to allow for the genuinely fermionic nature of the one-particle Green's function, we employ the fermionic formulation of the QTM based on the fermionic R-operator of the Hubbard model. The purely imaginary value of the second largest eigenvalue reflects the k_F (= pi/2) oscillations of the one-particle Green's function at half-filling. By solving numerically the Bethe Ansatz equations with Trotter numbers up to N=10240, we obtain accurate data for the correlation length at finite temperatures down into the very low temperature region. The correlation length remains finite even at T=0 due to the existence of the charge gap. Our numerical data confirm Stafford and Millis' conjecture regarding an analytic expression for the correlation length at T=0.
Similar papers 1
February 7, 2017
The nonequilibrium dynamics of strongly-correlated fermions in lattice systems have attracted considerable interest in the condensed matter and ultracold atomic-gas communities. While experiments have made remarkable progress in recent years, there remains a need for the further development of theoretical tools that can account for both the nonequilibrium conditions and strong correlations. For instance, time-dependent theoretical quantum approaches based on the density matri...
May 21, 2001
We study an integrable model of one-dimensional strongly correlated electrons at finite temperature by explicit calculation of the correlation lengths of various correlation functions. The model is invariant with respect to the quantum superalgebra U_q(sl(2|1)) and characterized by the Hubbard interaction, correlated hopping and pair-hopping terms. Using the integrability, the graded quantum transfer matrix is constructed. From the analyticity of its eigenvalues, a closed set...
March 31, 2021
The Hubbard model is the simplest model of interacting fermions on a lattice and is of similar importance to correlated electron physics as the Ising model is to statistical mechanics or the fruit fly to biomedical science. Despite its simplicity, the model exhibits an incredible wealth of phases, phase transitions, and exotic correlation phenomena. While analytical methods have provided a qualitative description of the model in certain limits, numerical tools have shown impr...
August 25, 1995
We present a numerically stable Quantum Monte Carlo algorithm to calculate zero-temperature imaginary-time Green functions $ G(\vec{r}, \tau) $ for Hubbard type models. We illustrate the efficiency of the algorithm by calculating the on-site Green function $ G(\vec{r}=0, \tau) $ on $4 \times 4$ to $12 \times 12$ lattices for the two-dimensional half-filled repulsive Hubbard model at $U/t = 4$. By fitting the tail of $ G(\vec{r}=0, \tau) $ at long imaginary time to the form $e...
March 14, 2009
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-interacting limit is significantly broadened by the electronic correlations, but retains signatures of the approach to the edges of the first Brillouin zone as the density increases. Finite size scaling of simulations on large lattice...
February 14, 2010
The aim of this paper is to present a self contained introduction to the Hubbard model and some of its applications.The paper consists of two parts: the first will introduce the basic notions of the Hubbard model starting from the motivation for its development to the formulation of the Hamiltonian,and some methods of calculation within the model. The second part will discuss some applications of the model to 1D and 2D systems,based on a combination of the author's results wi...
September 24, 1996
The dynamical density-density correlation function is calculated for the one-dimensional, half-filled Hubbard model extended with nearest neighbor repulsion using the Lanczos algorithm for finite size systems and analytically for large on site repulsion compared to hopping amplitudes. At the zone boundary an excitonic feature exists for any finite nearest neighbor repulsion and exhausts most of the spectral weight, even for parameters where no exciton is visible at zero momen...
January 12, 2021
The low temperature thermodynamics of correlated 1D fermionic models with spin and charge degrees of freedom is obtained by exact diagonalization (ED) of small systems and followed by density matrix renormalization group (DMRG) calculations that target the lowest hundreds of states $\{E(N)\}$ at system size $N$ instead of the ground state. Progressively larger $N$ reaches $T < 0.05t$ in correlated models with electron transfer $t$ between first neighbors and bandwidth $4t$. T...
February 28, 1999
We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is not obvious from the Bethe Ansatz/conformal field theory (BA/CFT) approach. We show that by supplementing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice density operators decay exponentially.
April 28, 2008
We present the exact solution of the one-dimensional extended Hubbard model in the atomic limit within the Green's function and equation of motion formalism. We provide a comprehensive and systematic analysis of the model by considering all the relevant response and correlation functions as well as thermodynamic quantities in the whole parameter space. At zero temperature we identify four phases in the plane (U,n) [U is the onsite potential and n is the filling] and relative ...