October 29, 2002
Similar papers 5
October 9, 2017
Magnetic Feshbach resonances are an invaluable tool for controlling ultracold atoms and molecules. They can be used to tune atomic interactions and have been used extensively to explore few- and many-body phenomena. They can also be used for magnetoassociation, in which pairs of atoms are converted into molecules by ramping an applied magnetic field across a resonance. Pairs of open-shell atoms, such as the alkalis, chromium, and some lanthanides, exhibit broad resonances bec...
April 6, 2006
We predict the resonance enhanced magnetic field dependence of atom-dimer relaxation and three-body recombination rates in a $^{87}$Rb Bose-Einstein condensate (BEC) close to 1007 G. Our exact treatments of three-particle scattering explicitly include the dependence of the interactions on the atomic Zeeman levels. The Feshbach resonance distorts the entire diatomic energy spectrum causing interferences in both loss phenomena. Our two independent experiments confirm the predic...
February 15, 2009
The effects of combined external electric and magnetic fields on elastic collisions in ultracold Li--Rb mixtures is studied using recently obtained, experimentally verified potentials. Our analysis provides both quantitative predictions for and a detailed physical interpretation of the phenomena arising from electric-field-induced interactions. It is shown that the electric field shifts the positions of intrinsic magnetic Feshbach resonances, generates copies of resonances pr...
December 11, 2015
We report on a precision measurement of the $D$ line tune-out wavelength of $^{87}$Rubidium in the hyperfine ground state $|F=1, m_F=0,\pm1 \rangle$ manifold at 790 nm, where the scalar ac Stark shifts of the $D_1$ and the $D_2$ lines cancel. This wavelength is sensitive to usually neglected contributions from vector and tensor ac Stark shifts, transitions to higher principle quantum numbers, and core electrons. The ac Stark shift is probed by Kapitza-Dirac scattering of a Ru...
November 14, 2022
Magnetically tunable Feshbach resonances exist in ultracold collisions between atoms in $^2$S and $^3$P$_0$ states, such as an alkali-metal atom colliding with Yb or Sr in a clock state. We investigate the mechanisms of these resonances and identify the terms in the collision Hamiltonian responsible for them. They involve indirect coupling between the open and closed channels, via intermediate channels involving atoms in $^3$P$_1$ states. The resonance widths are generally pr...
March 5, 2008
We investigate magnetic Feshbach resonances in two different ultracold K-Rb mixtures. Information on the K(39)-Rb(87) isotopic pair is combined with novel and pre-existing observations of resonance patterns for K(40)-Rb(87). Interisotope resonance spectroscopy improves significantly our near-threshold model for scattering and bound-state calculations. Our analysis determines the number of bound states in singlet/triplet potentials and establishes precisely near threshold para...
April 5, 2010
We present a simple technique for studying collisions of ultracold atoms in the presence of a magnetic field and radio-frequency radiation (rf). Resonant control of scattering properties can be achieved by using rf to couple a colliding pair of atoms to a bound state. We show, using the example of 6Li, that in some ranges of rf frequency and magnetic field this can be done without giving rise to losses. We also show that halo molecules of large spatial extent require much les...
June 29, 2006
We control the interspecies interaction in a two-species atomic quantum mixture by tuning the magnetic field at a Feshbach resonance. The mixture is composed by fermionic 40K and bosonic 87Rb. We observe effects of the large attractive and repulsive interaction energy across the resonance, such as collapse or a reduced spatial overlap of the mixture, and we accurately locate the resonance position and width. Understanding and controlling instabilities in this mixture opens th...
December 6, 2008
Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This Review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resona...
May 23, 2005
A novel atom-molecule conversion technique has been investigated. Ultracold 85Rb atoms sitting in a DC magnetic field near the 155G Feshbach resonance are associated by applying a small sinusoidal oscillation to the magnetic field. There is resonant atom to molecule conversion when the modulation frequency closely matches the molecular binding energy. We observe that the atom to molecule conversion efficiency depends strongly on the frequency, amplitude, and duration of the a...