September 21, 2012
We analyze the role of the interplay between on-site interaction and inhomogeneous diffusion on the phenomenon of condensation in the zero-range process. We predict a universal phase diagram in the plane of two exponents, respectively characterizing the interactions and the diffusion disorder. The most prominent outcome is the existence of an extended condensed phase. In the latter phase, which originates as a result of the combined effects of strong enough interaction and we...
May 22, 2015
We study the effect of quenched disorder on the zero-range process (ZRP), a system of interacting particles undergoing biased hopping on a one-dimensional periodic lattice, with the disorder entering through random capacities of sites. In the usual ZRP, sites can accommodate an arbitrary number of particles, and for a class of hopping rates and high enough density, the steady state exhibits a condensate which holds a finite fraction of the total number of particles. The sites...
October 3, 2007
We study finite-size effects on the dynamics of a one-dimensional zero-range process which shows a phase transition from a low-density disordered phase to a high-density condensed phase. The current fluctuations in the steady state show striking differences in the two phases. In the disordered phase, the variance of the integrated current shows damped oscillations in time due to the motion of fluctuations around the ring as a dissipating kinematic wave. In the condensed phase...
December 19, 2013
We consider an extension of the zero-range process to the case where the hop rate depends on the state of both departure and arrival sites. We recover the misanthrope and the target process as special cases for which the probability of the steady state factorizes over sites. We discuss conditions which lead to the condensation of particles and show that although two different hop rates can lead to the same steady state, they do so with sharply contrasting dynamics. The first ...
December 21, 2004
We consider a zero-range process with two species of interacting particles. The steady state phase diagram of this model shows a variety of condensate phases in which a single site contains a finite fraction of all the particles in the system. Starting from a homogeneous initial distribution, we study the coarsening dynamics in each of these condensate phases, which is expected to follow a scaling law. Random walk arguments are used to predict the coarsening exponents in each...
January 5, 2018
We study asymmetric zero-range processes on Z with nearest-neighbour jumps and site disorder. The jump rate of particles is an arbitrary but bounded nondecreasing function of the number of particles. For any given environment satisfying suitable averaging properties, we establish a hydrodynamic limit given by a scalar conservation law including the domain above critical density, where the flux is shown to be constant.
July 8, 2005
We consider the one-dimensional partially asymmetric zero range process where the hopping rates as well as the easy direction of hopping are random variables. For this type of disorder there is a condensation phenomena in the thermodynamic limit: the particles typically occupy one single site and the fraction of particles outside the condensate is vanishing. We use extreme value statistics and an asymptotically exact strong disorder renormalization group method to explore the...
July 11, 2005
We study the condensation phenomenon in a zero range process on scale-free networks. We show that the stationary state property depends only on the degree distribution of underlying networks. The model displays a stationary state phase transition between a condensed phase and an uncondensed phase, and the phase diagram is obtained analytically. As for the dynamical property, we find that the relaxation dynamics depends on the global structure of underlying networks. The relax...
April 3, 2010
We study zero-range processes which are known to exhibit a condensation transition, where above a critical density a non-zero fraction of all particles accumulates on a single lattice site. This phenomenon has been a subject of recent research interest and is well understood in the thermodynamic limit. The system shows large finite size effects, and we observe a switching between metastable fluid and condensed phases close to the critical point, in contrast to the continuous ...
May 28, 2007
The Zero-Range Process, in which particles hop between sites on a lattice under conserving dynamics, is a prototypical model for studying real-space condensation. Within this model the system is critical only at the transition point. Here we consider a non-conserving Zero-Range Process which is shown to exhibit generic critical phases which exist in a range of creation and annihilation parameters. The model also exhibits phases characterised by mesocondensates each of which c...