January 21, 2003
Similar papers 2
April 26, 2014
We study the orbital and spin dynamics of charge carriers induced by non-overlapping linearly polarized light pulses in semiconductor quantum wells (QWs). It is shown that such an optical excitation with coherent pulses leads to a spin orientation of photocarriers and an electric current. The effects are caused by the interference of optical transitions driven by individual pulses. The distribution of carriers in the spin and momentum spaces depends on the QW crystallographic...
January 27, 2005
As is well known the absorption of circularly polarized light in semiconductors results in optical orientation of electron spins and helicity-dependent electric photocurrent, and the absorption of linearly polarized light is accompanied by optical alignment of electron momenta. Here we show that the absorption of unpolarized light in a quantum well (QW) leads to generation of a pure spin current, although both the average electron spin and electric current are vanishing.
March 4, 2003
We show that the sign of the circular photogalvanic effect can be changed by tuning the radiation frequency of circularly polarized light. Here resonant inversion of the photogalvanic effect has been observed for direct inter-subband transition in n-type GaAs quantum well structures. This inversion of the photon helicity driven current is a direct consequence of the lifting of the spin degeneracy due to k-linear terms in the Hamiltonian in combination with energy and momentum...
December 21, 2006
We study the spin photogalvanic effect in two-dimensional electron system with structure inversion asymmetry by means of the solution of semiconductor optical Bloch equations. It is shown that a linearly polarized light may inject a pure spin current in spin-splitting conduction bands due to Rashba spin-orbit coupling, while a circularly polarized light may inject spin-dependent photocurrent. We establish an explicit relation between the photocurrent by oblique incidence of a...
July 31, 2003
A theory of the circular photogalvanic effect caused by spin splitting in quantum wells is developed. Direct interband transitions between the hole and electron size-quantized subbands are considered. It is shown that the photocurrent value and direction depend strongly on the form of the spin-orbit interaction. The currents induced by structure-, bulk-, and interface-inversion asymmetry are investigated. The photocurrent excitation spectra caused by spin splittings in both c...
July 23, 2001
Spin sensitive bleaching of the absorption of far-infrared radiation has been observed in $p$-type GaAs/AlGaAs quantum well structures. The absorption of circularly polarized radiation saturates at lower intensities than that of linearly polarized light due to monopolar spin orientation in the first heavy hole subband. Spin relaxation times of holes in $p$-type material in the range of tens of ps were derived from the intensity dependence of the absorption.
February 8, 2005
We show that free-carrier (Drude) absorption of both polarized and unpolarized terahertz radiation in quantum well (QW) structures causes an electric photocurrent in the presence of an in-plane magnetic field. Experimental and theoretical analysis evidences that the observed photocurrents are spin-dependent and related to the gyrotropy of the QWs. Microscopic models for the photogalvanic effects in QWs based on asymmetry of photoexcitation and relaxation processes are propose...
February 12, 2010
We describe the observation of the circular and linear photogalvanic effects in HgTe/CdHgTe quantum wells. The interband absorption of mid-infrared radiation as well as the intrasubband absorption of terahertz (THz) radiation in the QWs structures is shown to cause a dc electric current due to these effects. The photocurrent magnitude and direction varies with the radiation polarization state and crystallographic orientation of the substrate in a simple way that can be unders...
November 20, 2003
We investigate both experimentally and theoretically, the magneto-gyrotropic photogalvanic effect in zinc-blende based quantum wells with $C_{2v}$ point-group symmetry using optical excitation in the terahertz frequency range. The investigated frequencies cause intra-subband but no inter-band and inter-subband transitions. While at normal incidence the photocurrent vanishes at zero magnetic field, it is shown that an in-plane magnetic field generates photocurrents both for po...
January 31, 2005
We show that a pure spin current can be injected in quantum wells by the absorption of linearly polarized infrared radiation, leading to transitions between subbands. The magnitude and the direction of the spin current depend on the Dresselhaus and Rashba spin-orbit coupling constants and light frequency and, therefore, can be manipulated by changing the light frequency and/or applying an external bias across the quantum well. The injected spin current should be observable ei...