January 27, 2003
Field angle dependent critical current, magneto-optical microscopy, and high resolution electron microscopy studies have been performed on YBa2Cu3O7-d thin films grown on mis-cut substrates. High resolution electron microscopy images show that the films studied exhibited clean epitaxial growth with a low density of anti-phase boundaries and stacking faults. Any anti-phase boundaries (APBs) formed near the film substrate interface rapidly healed rather than extending through the thickness of the film. Unlike vicinal films grown on annealed substrates, which contain a high density of anti-phase boundaries, magneto optical imaging showed no filamentary flux penetration in the films studied. The flux penetration is, however, asymmetric. This is associated with intrinsic pinning of flux strings by the tilted a-b planes and the dependence of the pinning force on the angle between the local field and the a-b planes. Field angle dependent critical current measurements exhibited the striking vortex channelling effect previously reported in vicinal films. By combining the results of three complementary characterisation techniques it is shown that extended APB free films exhibit markedly different critical current behaviour as compared to APB rich films. This is attributed to the role of APB sites as strong pinning centres for Josephson string vortices between the a-b planes.
Similar papers 1
June 25, 2004
Most measurements of critical current densities in YBa$_2$Cu$_3$O$_{7-\delta}$ thin films to date have been performed on films where the \textit{c}-axis is grown normal to the film surface. With such films, the analysis of the dependence of $j_c$ on the magnetic field angle is complex. The effects of extrinsic contributions to the angular field dependence of $j_c$, such as the measurement geometry and disposition of pinning centres, are convoluted with those intrinsically due...
April 17, 2007
Dissipation-free current transport in high-temperature superconductors is one of the most crucial properties of this class of materials which is directly related to the effective inhibition of flux line movement by defect structures. In this respect epitaxially grown thin films of YBa2Cu3O7-d (YBCO) are proving to be the strongest candidates for many widescale applications that are close to realization. We show that the relation between different defect structures and flux li...
August 13, 2003
The high $T_{c}$ cuprate superconductors are noted for their anisotropic layered structure, certain of these materials indeed tend toward the limit of a Lawrence-Doniach superconductor. However, YBa$_2$Cu$_3$O$_{7-\delta}$ has a smaller anisotropy than would be expected from its interlayer spacing. This is due to the cuprate chains in the structure. To investigate the influence of the chain oxygen on transport properties critical current versus applied field angle measurement...
June 27, 2000
Low-angle grain boundaries with misorientation angles theta < 5 degrees in optimally doped thin films of YBCO are investigated by magnetooptical imaging. By using a numerical inversion scheme of Biot-Savart's law the critical current density across the grain boundary can be determined with a spatial resolution of about 5 micrometers. Detailed investigation of the spatially resolved flux density and current density data shows that the current density across the boundary varies...
August 22, 2005
Nano-scaled substrate surface roughness is shown to strongly influence the critical current density Jc in YBCO films made by pulse-laser-deposition on the crystalline LaAlO3 substrates consisting of two separate twin-free and twin-rich regions. The nano-scaled corrugated surface was created in the twin-rich region during the deposition process. Using magneto-optical imaging techniques coupled with optical and atomic force microscopy, we observed an enhanced flux pinning in th...
February 21, 2003
Transport critical current measurements have been performed on 5 degree [001]-tilt thin film YBa2Cu3O7-delta single grain boundaries with magnetic field rotated in the plane of the film, phi. The variation of the critical current has been determined as a function of the angle between the magnetic field and the grain boundary plane. In applied fields above 1 T the critical current, j_c, is found to be strongly suppressed only when the magnetic field is within an angle phi_k of...
July 25, 2006
The critical current (Jc) of highly twinned YBa2Cu3O7 films has been measured as a function of temperature, magnetic field and angle. For much of the parameter space we observe a strong suppression of Jc for fields in the twin boundary (TB) directions; this is quantitatively modeled as flux-cutting-mediated vortex channeling. For certain temperatures and fields a cross-over occurs to a regime in which channeling is blocked and the TBs act as planar pinning centers so that TB ...
August 16, 2003
The critical current density flowing across low angle grain boundaries in YBa$_2$Cu$_3$O$_{7-\delta}$ thin films has been studied magnetometrically. Films (200 nm thickness) were deposited on SrTiO$_3$ bicrystal substrates containing a single [001] tilt boundary, with angles of 2, 3, 5, and 7 degrees, and the films were patterned into rings. Their magnetic moments were measured in applied magnetic fields up to 30 kOe at temperatures of 5 - 95 K; current densities of rings wit...
May 24, 2006
We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and the normal state resistivity curve measured after successive ion milling of ~ 1 um thick high Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTS). Contrary to many rece...
September 3, 1996
The vortex contribution to the dc field (H) dependent microwave surface impedance Z_s = R_s+iX_s of YBa_2Cu_3O_{7-x} thin films was measured using suspended patterned resonators. Z_s(H) is shown to be a direct measure of the flux density B(H) enabling a very precise test of models of flux penetration. Three regimes of field-dependent behavior were observed: (1) Initial flux penetration occurs on very low field scales H_i(4.2K) 100Oe, (2) At moderate fields the flux penetratio...