February 5, 2003
Similar papers 2
May 22, 2019
The ground state equilibrium properties of copper-gold alloys have been explored with the state of art random phase approximation (RPA). Our estimated lattice constants agree with the experiment within a mean absolute percentage error (MAPE) of 1.4 percent. Semi-local functionals such as the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) and strongly constrained and appropriately normed (SCAN) fail to provide accurate bulk moduli, which indicat...
August 26, 2002
We present the itinerant coherent-potential approximation(ICPA), an analytic, translationally invariant and tractable form of augmented-space-based, multiple-scattering theory in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associate...
December 2, 2022
Disordered materials are attracting considerable attention because of their enhanced properties compared to their ordered analogs, making them particularly suitable for high-temperature applications. The feasibility of incorporating these materials into new devices depends on a variety of thermophysical properties. Among them, thermal expansion is critical to device stability, especially in multi-component systems. Its calculation, however, is quite challenging for materials ...
July 4, 2019
We applied an efficient methodology to separate vibrational and configurational entropies in bulk metallic glasses by means of molecular dynamics simulation based on a combination of non-equilibrium adiabatic switching and reversible scaling methods. This approach involves calculating the vibrational free energy using the Einstein crystal as a reference for the solid phase and the recently proposed Uhlenbeck-Ford model for the fluid phase. This methodology has the advantage t...
November 7, 2022
The whole Al-Li phase diagram is predicted from first principles calculations and statistical mechanics including the effect of configurational and vibrational entropy. The formation enthalpy of different configurations at different temperatures was accurately predicted by means of cluster expansions that were fitted from first principles calculations. The vibrational entropic contribution of each configuration was determined from the bond length vs. bond stiffness relationsh...
December 29, 2020
In the warm dense regime, where the electron temperature is increased to the same order of the Fermi temperature, the dynamical stability of elemental metals depends on its electronic band structure as well as its crystal structure. It has been known that phonon hardening occurs due to an enhanced internal pressure caused by electron excitations as in close-packed simple metals, whereas phonon softening occurs at a specific point in the Brillouin zone as in body-centered cubi...
April 16, 2012
We present a novel cluster-expansion (CE) approach for the first-principles modeling of temperature and concentration dependent alloy properties. While the standard CE method includes temperature effects only via the configurational entropy in Monte Carlo simulations, our strategy also covers the first-principles free energies of lattice vibrations. To this end, the effective cluster interactions of the CE have been rendered genuinely temperature dependent, so that they can i...
February 28, 2019
A density-functional-theory based approach to efficiently compute numerically exact vibrational free energies - including anharmonicity - for chemically complex multicomponent alloys is developed. It is based on a combination of thermodynamic integration and a machine-learning potential. We demonstrate the performance of the approach by computing the anharmonic free energy of the prototypical five-component VNbMoTaW refractory high entropy alloy.
August 7, 2020
The lattice dynamics for NiCo, NiFe, NiFeCo, NiFeCoCr, and NiFeCoCrMn medium to high entropy alloy have been investigated using the DFT calculation. The phonon dispersions along three different symmetry directions are calculated by the weighted dynamical matrix (WDM) approach and compared with the supercell approach and inelastic neutron scattering. We could correctly predict the trend of increasing of the vibrational entropy by adding the alloys and the highest vibrational e...
November 9, 2017
While the ongoing search to discover new high-entropy systems is slowly expanding beyond metals, a rational and effective method for predicting "in silico" the solid solution forming ability of multi-component systems remains yet to be developed. In this article, we propose a novel high-throughput approach, called "LTVC", for estimating the transition temperature of a solid solution: ab-initio energies are incorporated into a mean field statistical mechanical model where an o...