February 14, 2003
Similar papers 2
July 2, 2003
We present first-principles calculations of the magnetic hyperfine fields H of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the dependence of H on the coordination number by placing the impurity in the surfaces, on top of them at the adatom positions, and in the bulk. We find a strong coordination dependence of H, different and characteristic for each impurity. The behavior is explained in terms of the on-site s-p hybridization as the symmetry is r...
February 7, 2011
The orientation of the magnetization of a Ni(110) surface was investigated using techniques with different probing depths. By making use of electron capture into excited states of fast He atoms, we found that the magnetization of the topmost surface layer is not aligned along the easy axes of Ni. However, for a 50 ML film Fe on Ni(110) we observed the magnetization of the topmost Fe surface layer is along the easy axes of Fe.
March 18, 2012
Imaging the change in the magnetization vector in real time by spin-polarized low-energy electron microscopy, we observed a hydrogen-induced, reversible spin-reorientation transition in a cobalt bilayer on Ru(0001). Initially, hydrogen sorption reduces the size of out-of-plane magnetic domains and leads to the formation of a magnetic stripe domain pattern, which can be understood as a consequence of reducing the out-of-plane magnetic anisotropy. Further hydrogen sorption indu...
June 25, 2013
We present a detailed ab initio study of the electronic structure and magnetic order of an Fe monolayer on the Ir(001) surface covered by adsorbed oxygen and hydrogen. The results are compared to the clean Fe/Ir(001) system, where recent intensive studies indicated a strong tendency towards an antiferromagnetic order and complex magnetic structures. The adsorption of an oxygen overlayer significantly increases interlayer distance between the Fe layer and the Ir substrate, whi...
November 19, 2008
We performed first-principles calculations aimed to investigate the role of an heteroatom like N in the chemical and the long-range van der Waals (vdW) interactions for a flat adsorption of several pi-conjugated molecules on the Cu(110) surface. Our study reveals that the alignment of the molecular orbitals at adsorbate-substrate interface depends on the number of heteroatoms. As a direct consequence, the molecule-surface vdW interactions involve not only pi-like orbitals whi...
August 19, 2018
We investigate the spin transport and ferromagnetic resonance properties of giant magnetoresistive (GMR) Co/Cu-Ni multilayers with variable levels of Ni doping in the Cu spacer. We present an experimental evidence for a magnetic-to-diamagnetic transition in the atomic magnetic moment of Ni in the Cu matrix for concentrations below 15 at. % Ni. As its concentration is increased, Ni atoms turn into spin scattering centers, which is manifested experimentally as a step-like chang...
September 12, 2024
First-principles calculations were conducted to investigate the structural, electronic and magnetic properties of single Fe atoms and Fe dimers on Cu2N/Cu(100). Upon adsorption of an Fe atom onto Cu2N/Cu(100), robust Fe-N bonds form, resulting in the incorporation of both single Fe atoms and Fe dimers within the surface Cu2N layer. The partial occupancy of Fe-3d orbitals lead to large spin moments on the Fe atoms. Interestingly, both single Fe atoms and Fe dimers exhibit in-p...
October 25, 2024
The adsorption and dissociation of H$_2$, O$_2$, and H$_2$O on Ni-Fe alloys with variable Fe:Ni ratio are studied by means of Density Functional Theory calculations. The alloy composition deeply influences the thermochemistry of the adsorption and dissociation processes, with relevant implications to catalysis and electrocatalysis. For large concentration of Fe, the adsorption of H$_2$ is facilitated. On the contrary, O$_2$ is bound more strongly on Ni(111). The dissociation ...
September 28, 2018
The creation of magnetism on non-magnetic semiconductor surfaces is of importance for the realization of spintronics devices. Especially, the coupling of electron spins within quantum nanostructures can be utilized for nanomagnetism applications. Here, we demonstrate, based on first-principles density-functional theory calculations, that the adsorption of H atoms on the Si(111)-(7$\times$7) surface induces the spin polarization of surrounding Si dangling bonds (DBs) and their...
May 13, 2014
We calculate the electronic structure and magnetic properties of hydrogenated graphite surfaces using van der Waals density functional theory (DFT) and model Hamiltonians. We find, as previously reported, that the interaction between hydrogen atoms on graphene favors adsorption on different sublattices along with an antiferromagnetic coupling of the induced magnetic moments. On the contrary, when hydrogenation takes place on the surface of graphene multilayers or graphite (Be...