January 17, 2005
We present an extensive comparative study of ground-state densities and pair distribution functions for electrons confined in two-dimensional parabolic quantum dots over a broad range of coupling strength and electron number. We first use spin-density-functional theory to determine spin densities that are compared with Diffusion Monte Carlo (DMC) data. This accurate knowledge of one-body properties is then used to construct and test a local approximation for the electron-pair...
November 30, 2005
We present unrestricted Hartree Fock method coupled with configuration interaction (CI) method (URHF-CI) suitable for the calculation of ground and excited states of large number of electrons localized by complex gate potentials in quasi-two-dimensional quantum dot molecules. The method employs real space finite difference method, incorporating strong magnetic field, for the calculating of single particle states. The Hartree-Fock method is employed for the calculation of dire...
April 28, 2003
Numerically exact path-integral Monte Carlo data are presented for $N\leq 10$ strongly interacting electrons confined in a 2D parabolic quantum dot, including a defect to break rotational symmetry. Low densities are studied, where an incipient Wigner molecule forms. A single impurity is found to cause drastic effects: (1) The standard shell-filling sequence with magic numbers $N=4,6,9$, corresponding to peaks in the addition energy $\Delta(N)$, is destroyed, with a new peak a...
June 11, 2004
We consider circular and elliptic quantum dots with parabolic external confinement, containing 0 - 22 electrons and with values of r_s in the range 0 < r_s < 3. We perform restricted and unrestricted Hartree-Fock calculations, and further take into account electron correlations using second-order perturbation theory. We demonstrate that in many cases correlations qualitatively change the spin structure of the ground state from that obtained under Hartree-Fock and spin-density...
April 13, 2000
We present ground-state calculations for laterally coupled quantum dots containing 2, 4, and 8 electrons. As our emphasis is on spin effects our results are obtained by applying spin-density functional theory (SDFT). By varying the distance between the centers of the coupled quantum dots, the transition from weak to strong coupling situation is realized. For the 2-electron system we also apply the Heitler-London approximation and analytical concepts to check the reliability o...
September 6, 2001
The ground states of N-electron parabolic quantum dots in the presence of a perpendicular magnetic field are investigated. Rigorous lower bounds to the ground-state energies are obtained. It is shown that our lower bounds agree well with the results of exact diagonalization. Analytic results for the lower bounds to the ground-state energies of the quantum dots in a strong magnetic field (known as electron molecule) agree very well with numerically calculated lower bounds.
July 25, 2007
We report results for the ground state energies and wave functions obtained by projecting spatially unrestricted Hartree Fock states to eigenstates of the total spin and the angular momentum for harmonic quantum dots with $N\leq 12$ interacting electrons including a magnetic field states with the correct spatial and spin symmetries have lower energies than those obtained by the unrestricted method. The chemical potential as a function of a perpendicular magnetic field is obta...
August 13, 2002
We investigate the properties of many-electron systems in two-dimensional polygonal (triangle, square, pentagon, hexagon) potential wells by using the density functional theory. The development of the ground state electronic structure as a function of the dot size is of particular interest. First we show that in the case of two electrons, the Wigner molecule formation agrees with the previous exact diagonalization studies. Then we present in detail how the spin symmetry break...
May 3, 2006
We calculate ground state energies in the Brueckner-Hartree-Fock theory for $N$ electrons (with $N\le 20$) confined to a circular quantum dot and in presence of a static magnetic field. Comparison with the predictions of Hartree-Fock, local-spin-density and exact configuration-interaction theories is made. We find that the correlations taken into account in Brueckner-Hartree-Fock calculations give an important contribution to the ground state energies, specially in strongly c...
February 6, 2003
We present a group theoretical study of the symmetry-broken unrestricted Hartree-Fock orbitals and electron densities in the case of a two-dimensional N-electron single quantum dot (with and without an external magnetic field). The breaking of rotational symmetry results in canonical orbitals that (1) are associated with the eigenvectors of a Hueckel hamiltonian having sites at the positions determined by the equilibrium molecular configuration of the classical N-electron pro...