July 9, 2003
Similar papers 2
September 9, 2005
The bandstructure of the zinc-blende phase of AlN, GaN, InN is calculated employing the exact-exchange (EXX) Kohn-Sham density-functional theory and a pseudopotential plane-wave approach. The cation semicore d electrons are treated both as valence and as core states. The EXX bandgaps of AlN and GaN (obtained with the Ga 3d electrons included as core states) are in excellent agreement with previous EXX results, GW calculations and experiment. Inclusion of the semicore d electr...
March 30, 2022
The Kohn-Sham gaps of density functional theory (DFT) obtained in terms of local density approximation (LDA) or generalized gradient approximation (GGA) cannot be directly linked to the fundamental gaps of semiconductors, but in engineering there is a strong demand to match them through certain rectification methods. Shell DFT-1/2 (shDFT-1/2), as a variant of DFT-1/2, is a potential candidate to yield much improved band gaps for covalent semiconductors, but its accuracy depen...
December 22, 2015
We have recently implemented a new version of the quasiparticle self-consistent GW (QSGW) method in the ecalj package released at http://github.com/tkotani/ecalj. Since the new version of the ecalj is numerically stable and accurate compared to the previous versions, we can perform calculations easily without being bothered with setting input parameters. Here we examine its ability to describe energy band properties, e.g., band-gap energy, eigenvalues at special points and ef...
October 25, 2024
Theoretical studies of semiconductors and band insulators are usually based on variants of the $GW$ method without full self-consistency, like single-shot $G^0W^0$ or quasiparticle self-consistent $GW$. Fully self-consistent $GW$ provides a poor description of the gap size and electronic structure due to the lack of vertex corrections. While it is hard to predict at which order corrections can be neglected, local vertex corrections to all orders can be consistently included b...
February 14, 2013
We report results from an efficient, robust, ab-initio method for self-consistent calculations of electronic and structural properties of Ge. Our non-relativistic calculations employed a generalized gradient approximation (GGA) potential and the linear combination of atomic orbitals (LCAO) formalism. The distinctive feature of our computations stem from the use of Bagayoko-Zhao-Williams-Ekuma-Franklin (BZW-EF) method. Our results are in agreement with experimental ones where ...
January 17, 2003
A new implementation of the GW approximation (GWA) based on the all-electron Projector-Augmented-Wave method (PAW) is presented, where the screened Coulomb interaction is computed within the Random Phase Approximation (RPA) instead of the plasmon-pole model. Two different ways of computing the self-energy are reported. The method is used successfully to determine the quasiparticle energies of six semiconducting or insulating materials: Si, SiC, AlAs, InAs, NaH and KH. To illu...
November 13, 2020
Fully self-consistent GW (sc-GW) methods are now available to evaluate quasiparticle and spectral properties of various molecular and bulk systems. However, such techniques based on the full matrix of G and W are computationally demanding. The routinely used single-shot GW-approximation (G0W0) has an undesirable dependency on the choice of initial exchange-correlation functional. In the literature, many so-called self-consistent GW methods are based on diagonal approximation ...
January 22, 2004
We present ab initio quasiparticle self-energy calculations in crystalline GaAs for cases of intense electronic excitation (~ 10% of valence electrons excited into conduction band), relevant for high-intensity ultra-short pulsed laser experiments. Calculations are performed using an out-of-equilibrium generalization of the GW approximation based on the Keldysh Green's function approach. Our results indicate that while the band gap is a sensitive function of the amount of exci...
January 10, 2017
The LDA-1/2 method for self-energy correction is a powerful tool for calculating accurate band structures of semiconductors, while keeping the computational load as low as standard LDA. Nevertheless, controversies remain regarding the arbitrariness of choice between (1/2)e and (1/4)e charge stripping from the atoms in group IV semiconductors, the incorrect direct band gap predicted for Ge, and inaccurate band structures for III-V semiconductors. Here we propose an improved me...
November 29, 2024
The GW approximation within many-body perturbation theory is the state of the art for computing quasiparticle energies in solids. Typically, Kohn-Sham (KS) eigenvalues and eigenfunctions, obtained from a Density Functional Theory (DFT) calculation are used as a starting point to build the Green's function G and the screened Coulomb interaction W, yielding the one-shot G0W0 selfenergy if no further update of these quantities are made. Multiple implementations exist for both th...