September 2, 2003
Similar papers 4
February 17, 2011
In many biological and small scale technological applications particles may transiently bind to a cylindrical surface. In between two binding events the particles diffuse in the bulk, thus producing an effective translation on the cylinder surface. We here derive the effective motion on the surface, allowing for additional diffusion on the cylinder surface itself. We find explicit solutions for the number of adsorbed particles at one given instant, the effective surface displ...
April 29, 2013
We briefly review the principles, mathematical bases, numerical shortcuts and applications of fast random walk (FRW) algorithms. This Monte Carlo technique allows one to simulate individual trajectories of diffusing particles in order to study various probabilistic characteristics (harmonic measure, first passage/exit time distribution, reaction rates, search times and strategies, etc.) and to solve the related partial differential equations. The adaptive character and flexib...
May 15, 2023
Adsorption to a surface, reversible-binding, and trapping are all prevalent scenarios where particles exhibit "stickiness". Escape and first-passage times are known to be drastically affected, but detailed understanding of this phenomenon remains illusive. To tackle this problem, we develop an analytical approach to the escape of a diffusing particle from a domain of arbitrary shape, size, and surface reactivity. This is used to elucidate the effect of stickiness on the escap...
April 23, 2014
We consider a model of surface-mediated diffusion with alternating phases of pure bulk and surface diffusion. For this process, we compute the mean exit time from a disk through a hole on the circle. We develop a spectral approach to this escape problem in which the mean exit time is explicitly expressed through the eigenvalues of the related self-adjoint operator. This representation is particularly well suited to investigate the asymptotic behavior of the mean exit time in ...
February 28, 2007
Results of analytic and numerical investigations of first-passage properties of equilibrium fluctuations of monatomic steps on a vicinal surface are reviewed. Both temporal and spatial persistence and survival probabilities, as well as the probability of persistent large deviations are considered. Results of experiments in which dynamical scanning tunneling microscopy is used to evaluate these first-passage properties for steps with different microscopic mechanisms of mass tr...
October 31, 2023
In this chapter, we review our recent work on first passage time (FPT) problems for absorption by a target whose interface is semipermeable. For pedagogical reasons, we focus on a single Brownian particle searching for a single target in a bounded domain. We begin by writing down the forward diffusion equation for the target problem, and define various quantities of interest such as the survival probability, absorption flux, and the FPT density. We also present a general meth...
December 19, 2014
Diffusion of molecules in cells plays an important role in providing a biological reaction on the surface by finding a target on the membrane surface. The water retardation (slow diffusion) near the target assists the searching molecules to recognize the target. Here, we consider effects of the surface on the diffusivity in three-dimensional diffusion processes, where diffusion on the surface is slower than that in bulk. We show that the ensemble-averaged mean square displace...
December 18, 2008
We consider the effective surface motion of a particle that freely diffuses in the bulk and intermittently binds to that surface. From an exact approach we derive various regimes of the effective surface motion characterized by physical rates for binding/unbinding and the bulk diffusivity. We obtain a transient regime of superdiffusion and, in particular, a saturation regime characteristic for the cylindrical geometry. This saturation, however, in a finite system is not termi...
April 22, 1997
The kinetics of the deposition of colloidal particles onto a solid surface is analytically studied. We take into account both the diffusion of particles from the bulk as well as the geometrical aspects of the layer of adsorbed particles. We derive the first kinetic equation for the coverage of the surface (a generalized Langmuir equation) whose predictions are in agreement with recent simulation results where diffusion of particles from the bulk is explicitly considered.
April 21, 2003
We investigate through molecular dynamics the transition from Knudsen to molecular diffusion transport towards 2d absorbing interfaces with irregular geometry. Our results indicate that the length of the active zone decreases continuously with density from the Knudsen to the molecular diffusion regime. In the limit where molecular diffusion dominates, we find that this length approaches a constant value of the order of the system size, in agreement with theoretical prediction...