September 12, 2003
We compare the speed with which a sexual, respectively an asexual, population is able to respond to a biased selective pressure. Our model focuses on the Weismann hypothesis that the extra variation caused by crossing-over and recombination during sexual reproduction allows a sexual population to adapt faster. We find, however, that the extra variation amongst the progeny produced during sexual reproduction for most model parameters is unable to overcome the effect that parents with a high individual fitness in general must mate with individuals of lower individual fitness resulting in a moderate reproductive fitness for the pair.
Similar papers 1
September 2, 2015
The question as to why most higher organisms reproduce sexually has remained open despite extensive research, and has been called "the queen of problems in evolutionary biology". Theories dating back to Weismann have suggested that the key must lie in the creation of increased variability in offspring, causing enhanced response to selection. Rigorously quantifying the effects of assorted mechanisms which might lead to such increased variability, and establishing that these be...
June 6, 2018
The famous "two-fold cost of sex" is really the cost of anisogamy -- why should females mate with males who do not contribute resources to offspring, rather than isogamous partners who contribute equally? In typical anisogamous populations, a single very fit male can have an enormous number of offspring, far larger than is possible for any female or isogamous individual. If the sexual selection on males aligns with the natural selection on females, anisogamy thus allows much ...
June 30, 2000
In evolution theory the concept of a fitness landscape has played an important role, evolution itself being portrayed as a hill-climbing process on a rugged landscape. In this article it is shown that in general, in the presence of other genetic operators such as mutation and recombination, hill-climbing is the exception rather than the rule. This descrepency can be traced to the different ways that the concept of fitness appears --- as a measure of the number of fit offsprin...
March 8, 2017
Stronger selection implies faster evolution---that is, the greater the force, the faster the change. This apparently self-evident proposition, however, is derived under the assumption that genetic variation within a population is primarily supplied by mutation (i.e.\ mutation-driven evolution). Here, we show that this proposition does not actually hold for recombination-driven evolution, i.e.\ evolution in which genetic variation is primarily created by recombination rather t...
September 8, 2003
Using a lattice model based on Monte Carlo simulations, we study the role of the reproduction pattern on the fate of an evolving population. Each individual is under the selection pressure from the environment and random mutations. The habitat ("climate") is changing periodically. Evolutions of populations following two reproduction patterns are compared, asexual and sexual. We show, via Monte Carlo simulations, that sexual reproduction by keeping more diversified populations...
February 10, 2021
The long-term growth rate of populations in varying environments quantifies the evolutionary value of processing the information that biological individuals inherit from their ancestors and acquire from their environment. Previous models were limited to asexual reproduction with inherited information coming from a single parent with no recombination. We present a general extension to sexual reproduction and an analytical solution for a particular but important case, the infin...
March 12, 2017
An elementary biostatistical theory based on a selectivity-variability principle is proposed to address a question raised by Charles Darwin, namely, how one sex of a sexually dimorphic species might tend to evolve with greater variability than the other sex. Briefly, the theory says that if one sex is relatively selective then from one generation to the next, more variable subpopulations of the opposite sex will generally tend to prevail over those with lesser variability. Mo...
December 12, 2014
On rugged fitness landscapes where sign epistasis is common, adaptation can often involve either individually beneficial "uphill" mutations or more complex mutational trajectories involving fitness valleys or plateaus. The dynamics of the evolutionary process determine the probability that evolution will take any specific path among a variety of competing possible trajectories. Understanding this evolutionary choice is essential if we are to understand the outcomes and predic...
August 30, 2008
The two classic theories for the existence of sexual replication are that sex purges deleterious mutations from a population, and that sex allows a population to adapt more rapidly to changing environments. These two theories have often been presented as opposing explanations for the existence of sex. Here, we develop and analyze evolutionary models based on the asexual and sexual replication pathways in Saccharomyces cerevisiae (Baker's yeast), and show that sexual replicati...
August 17, 2011
Adaptation often involves the acquisition of a large number of genomic changes which arise as mutations in single individuals. In asexual populations, combinations of mutations can fix only when they arise in the same lineage, but for populations in which genetic information is exchanged, beneficial mutations can arise in different individuals and be combined later. In large populations, when the product of the population size N and the total beneficial mutation rate U_b is l...