September 15, 2003
Similar papers 3
May 21, 2004
Motivated by recent experiments with superradiant Bose-Einstein Condensate (BEC) we consider simple microscopic models describing rigorously the interference of the two cooperative phenomena, BEC and radiation, in thermodynamic equilibrium. Our resuts in equilibrium confirm the presence of the observed superradiant light scattering from BEC: (a) the equilibrium superradiance exists only below a certain transition temperature; (b) there is superradiance and matter-wave (BEC) e...
April 29, 2000
These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin dom...
February 16, 2009
We discover an inherent mechanism for entanglement swap associated with sequential superradiance from an atomic Bose-Einstein condensate. Based on careful examinations with both analytical and numerical approaches, we conclude that as a result of the swap mechanism, Einstein-Podolsky-Rosen (EPR)-type quantum correlations can be detected among the scattered light pulses.
July 10, 2007
We investigate the atom pair production by superradiant backward-scattering from a Bose-Einstein condensate. By driving the superradiant process with two frequencies we can extend both the range of pulse duration and intensity by two orders of magnitude and obtain full control over the number of scattered atoms in forward and backward direction. We show that the atoms scattered in forward direction are strongly correlated with the atoms scattered in backward direction, which ...
August 13, 2012
We present experimental evidence supporting the postulation that the secondary effects of light-assisted collisions are the main reason that the superradiant light scattering efficiency in condensates is asymmetric with respect to the sign of the pump-laser detuning. Contrary to the recent experimental study, however, we observe severe and comparable heating with all three pump-laser polarizations. We also perform two-color, double-pulse measurements to directly study the deg...
March 25, 2011
Superradiant Rayleigh scattering in a Bose gas released from an optical lattice is analyzed with incident light pumping at the Bragg angle for resonant light diffraction. We show competition between superradiance scattering into the Bragg mode and into end-fire modes clearly leads to suppression of the latter at even relatively low lattice depths. A quantum light-matter interaction model is proposed for qualitatively explaining this result.
July 30, 1997
We present a Thomas-Fermi treatment of resonant incoherent scattering of low-intensity light by a dilute spatially confined Bose-Einstein condensate. The description gives simple analytical results and allows scattering data from finite-size condensates to be interpreted in terms of the properties of the homogeneous BEC-system. As an example, we show how the energy dispersion of the elementary excitations can be measured from scattering by a finite-size atomic-trap condensate...
February 24, 2016
We consider a quantum theory of elastic light scattering from macroscopic atomic sample existing in the Bose-Einstein condensate (BEC) phase. Following to the second quantized formalism we introduce a set of coupled and closed diagram equations for the polariton propagator contributing to the $T$ -matrix and scattering amplitude. Our approach allows to follow important density correction to the quasi-energy structure caused by static interaction and radiation losses associate...
June 13, 2007
We demonstrate superradiant conversion between a two-mode collective atomic state and a single-mode light field in an elongated cloud of Bose-condensed atoms. Two off-resonant write beams induce superradiant Raman scattering, producing two independent coherence gratings with a different wave vector in the cloud. By applying phase-matched read beams after a controllable delay, the gratings can be selectively converted into the light field also in a superradiant way. Due to the...
February 25, 2011
We discuss the passage-time statistics of superradiant light pulses generated during the scattering of laser light from an elongated atomic Bose-Einstein condensate. Focusing on the early-stage of the phenomenon, we analyze the corresponding probability distributions and their scaling behaviour with respect to the threshold photon number and the coupling strength. With respect to these parameters, we find quantities which only vary significantly during the transition between ...