October 8, 2003
Similar papers 3
November 19, 1996
We present analytic estimates for the energy levels of N electrons (N = 2 - 5) in a two-dimensional parabolic quantum dot. A magnetic field is applied perpendicularly to the confinement plane. The relevant scaled energy is shown to be a smooth function of the parameter \beta=(effective Rydberg/effective dot energy)^{1/6}. Two-point Pade approximants are obtained from the series expansions of the energy near the oscillator ($\beta\to 0$) and Wigner ($\beta\to\infty$) limits. T...
February 10, 2007
The spin-dependent trial wave functions with rotational symmetry are introduced to describe rotating Wigner molecular states with spin degree of freedom in four- and five-electron quantum dots under magnetic fields. The functions are constructed with unrestricted Hartree-Fock orbits and projection technique in long-range interaction limit. They highly overlap with the exact-diagonalized ones and give the accurate energies in strong fields. The zero points, i.e. vortices of th...
December 8, 2004
The crystalline or liquid character of the downward cusp states in N-electron parabolic quantum dots (QD's) at high magnetic fields is investigated using conditional probability distributions obtained from exact diagonalization. These states are of crystalline character for fractional fillings covering both low and high values, unlike the liquid Jastrow-Laughlin wave functions, but in remarkable agreement with the rotating-Wigner-molecule ones [Phys. Rev. B 66, 115315 (2002)]...
October 1, 1995
We investigate the effects of electron correlations on the ground state energy and the chemical potential of a droplet confined by a parabolic potential at high magnetic fields. We demonstrate the importance of correlations in estimating the transition field at which the first edge reconstruction of the maximum density droplet occurs in the spin polarized regime.
October 1, 1994
We present a study of ground state energies and densities of quantum dots in a magnetic field, which takes into account correlation effects through the Current-density functional theory (CDFT). The method is first tested against exact results for the energy and density of 2 and 3 electrons quantum dots, and it is found to yield an accuracy better than $ 3 \%. $ Then we extend the study to larger dots and compare the results with available experimental data. The orbital and sp...
June 11, 2001
We investigate the thermal properties of circular semiconductor quantum dots in high magnetic fields using finite temperature Hartree-Fock techniques. We demonstrate that for a given magnetic field strength quantum dots undergo various shape phase transitions as a function of temperature, and we outline possible observable consequences.
November 30, 2005
We present unrestricted Hartree Fock method coupled with configuration interaction (CI) method (URHF-CI) suitable for the calculation of ground and excited states of large number of electrons localized by complex gate potentials in quasi-two-dimensional quantum dot molecules. The method employs real space finite difference method, incorporating strong magnetic field, for the calculating of single particle states. The Hartree-Fock method is employed for the calculation of dire...
October 16, 2014
We present an extension of the spin-adapted configuration-interaction method for the computation of four electrons in a quasi two-dimensional quantum dot. By a group-theoretical decomposition of the basis set and working with relative and center-of-mass coordinates we obtain an analytical identification of all spurious center-of-mass states of the Coulomb-interacting electrons. We find a substantial reduction in the basis set used for numerical computations. At the same time ...
April 20, 2020
We study the system consisted of two electrons in a quantum dot with a three-dimensional harmonic confinement potential under the effect of a magnetic field. Specifically, two different confinement conditions are considered, one isotropic three-dimensional and the other anisotropic quasi-two-dimensional. Singlet and triplet lowest states properties as the energy, the exchange coupling, the two-electron density function and the spatial spreading of the two electrons in terms o...
February 20, 2004
We study electronic structures of two-dimensional quantum dots in strong magnetic fields using mean-field density-functional theory and exact diagonalization. Our numerically accurate mean-field solutions show a reconstruction of the uniform-density electron droplet when the magnetic field flux quanta enter one by one the dot in stronger fields. These quanta correspond to repelling vortices forming polygonal clusters inside the dot. We find similar structures in the exact tre...