ID: cond-mat/0310623

A spin metal-oxide-semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain

October 27, 2003

View on ArXiv
S. Sugahara, M. Tanaka
Condensed Matter
Materials Science

We propose and theoretically analyze a novel metal-oxide-semiconductor field-effect-transistor (MOSFET) type of spin transistor (hereafter referred to as a spin MOSFET) consisting of a MOS gate structure and half-metallic-ferromagnet (HMF) contacts for the source and drain. When the magnetization configuration between the HMF source and drain is parallel (antiparallel), highly spin-polarized carriers injected from the HMF source to the channel are transported into (blocked by) the HMF drain, resulting in the magnetization-configuration-dependent output characteristics. Our two-dimensional numerical analysis indicates that the spin MOSFET exhibits high (low) current drive capability in the parallel (antiparallel) magnetization, and that extremely large magnetocurrent ratios can be obtained. Furthermore, the spin MOSFET satisfies other important requirements for "spintronic" integrated circuits, such as high amplification capability, low power-delay product, and low off-current.

Similar papers 1