October 30, 2003
Similar papers 2
April 20, 2015
Atomic projection noise limits the ultimate precision of all atomic sensors, including clocks, inertial sensors, magnetometers, etc. The independent quantum collapse of $N$ atoms into a definite state (for example spin up or down) leads to an uncertainty $\Delta \theta_{SQL}=1/\sqrt{N}$ in the estimate of the quantum phase accumulated during a Ramsey sequence or its many generalizations. This phase uncertainty is referred to as the standard quantum limit. Creating quantum ent...
December 12, 2008
We present results on a free-space atom interferometer operating on the first order magnetically insensitive |F=1,mF=0> -> |F=2,mF=0> transition of Bose-condensed 87Rb atoms. A pulsed atom laser is output-coupled from a Bose-Einstein condensate and propagates through a sequence of two internal state beam splitters, realized via coherent Raman transitions between the two interfering states. We observe Ramsey fringes with a visibility close to 100% and determine the current and...
February 1, 2017
Quantum entanglement is crucial for simulating and understanding exotic physics of strongly correlated many-body systems, such as high--temperature superconductors, or fractional quantum Hall states. The entanglement of non-identical particles exhibits richer physics of strong many-body correlations and offers more opportunities for quantum computation, especially with neutral atoms where in contrast to ions the interparticle interaction is widely tunable by Feshbach resonanc...
September 16, 2017
We report on experiments investigating the collisional properties of atoms at ultralow collision energies using an all-optical atom collider. By using a pair of optical tweezers, we can manipulate two ultracold atom clouds and collide them together at energies up to three orders of magnitude larger than their thermal energy. Our experiments measure the scattering of $\rm ^{87}Rb$, $\rm ^{40}K$, and $\rm ^{40}K$-$\rm ^{87}Rb$ collisions. The versatility of our collider allows ...
September 21, 2004
We demonstrate a novel method of inducing an optical Feshbach resonance based on a coherent free-bound stimulated Raman transition. In our experiment atoms in a Rb87 Bose-Einstein condensate are exposed to two phase-locked Raman laser beams which couple pairs of colliding atoms to a molecular ground state. By controlling the power and relative detuning of the two laser beams, we can change the atomic scattering length considerably. The dependence of scattering length on these...
November 21, 2016
We propose a novel scheme to efficiently tune the scattering length of two colliding ground-state atoms by off-resonantly coupling the scattering-state to an excited Rydberg-molecular state using laser light. For the s-wave scattering of two colliding ${^{87}}\mathrm{Rb}$ atoms, we demonstrate that the effective optical length and pole strength of this Rydberg optical Feshbach resonance can be tuned over several orders of magnitude, while incoherent processes and losses are m...
July 16, 2018
We report on the use of an ultracold ensemble of $^{87}$Rb atoms trapped in a vertical lattice as a source for a quantum force sensor based on a Ramsey-Raman type interferometer. We reach spatial resolution in the low micrometer range in the vertical direction thanks to evaporative cooling down to ultracold temperatures in a crossed optical dipole trap. In this configuration, the coherence time of the atomic ensemble is degraded by inhomogeneous dephasing arising from atomic ...
January 22, 2014
This paper presents the first realisation of a simultaneous $^{87}$Rb -$^{85}$Rb Mach-Zehnder atom interferometer with Bose-condensed atoms. A number of ambitious proposals for precise terrestrial and space based tests of the Weak Equivalence Principle rely on such a system. This implementation utilises hybrid magnetic-optical trapping to produce spatially overlapped condensates with a duty cycle of 20s. A horizontal optical waveguide with co-linear Bragg beamsplitters and mi...
April 18, 2012
Interferometers with atomic ensembles constitute an integral part of modern precision metrology. However, these interferometers are fundamentally restricted by the shot noise limit, which can only be overcome by creating quantum entanglement among the atoms. We used spin dynamics in Bose-Einstein condensates to create large ensembles of up to $10^4$ pair-correlated atoms with an interferometric sensitivity $-1.61^{+0.98}_{-1.1}$ dB beyond the shot noise limit. Our proof-of-pr...
September 12, 2005
We have observed parametric generation and amplification of ultracold atom pairs. A 87Rb Bose-Einstein condensate was loaded into a one-dimensional optical lattice with quasimomentum k0 and spontaneously scattered into two final states with quasimomenta k1 and k2 . Furthermore, when a seed of atoms was first created with quasimomentum k1 we observed parametric amplification of scattered atoms pairs in states k1 and k2 when the phase-matching condition was fulfilled. This proc...