December 18, 2003
We discuss various aspects of the statistical formulation of the theory of random graphs, with emphasis on results obtained in a series of our recent publications.
Similar papers 1
October 23, 2024
The present overview of interacting particle systems on random graphs collects the notes of a mini-course given by the authors at the Brazilian School of Probability, 5--9 August 2024, in Salvador, Bahia, Brazil. The content is a personal snapshot of an interesting area of research at the interface between probability theory, combinatorics, statistical physics and network science that is developing rapidly.
July 6, 2005
Random walks on graphs are widely used in all sciences to describe a great variety of phenomena where dynamical random processes are affected by topology. In recent years, relevant mathematical results have been obtained in this field, and new ideas have been introduced, which can be fruitfully extended to different areas and disciplines. Here we aim at giving a brief but comprehensive perspective of these progresses, with a particular emphasis on physical aspects.
April 4, 2002
We develop a statistical mechanics approach for random networks with uncorrelated vertices. We construct equilibrium statistical ensembles of such networks and obtain their partition functions and main characteristics. We find simple dynamical construction procedures that produce equilibrium uncorrelated random graphs with an arbitrary degree distribution. In particular, we show that in equilibrium uncorrelated networks, fat-tailed degree distributions may exist only starting...
October 27, 2001
The problem of defining a statistical ensemble of random graphs with an arbitrary connectivity distribution is discussed. Introducing such an ensemble is a step towards uderstanding the geometry of wide classes of graphs independently of any specific model. This research was triggered by the recent interest in the so-called scale-free networks.
March 17, 2005
Statistical properties of evolving random graphs are analyzed using kinetic theory. Treating the linking process dynamically, structural characteristics such as links, paths, cycles, and components are obtained analytically using the rate equation approach. Scaling laws for finite systems are derived using extreme statistics and scaling arguments.
September 8, 2014
The theory of random graphs goes back to the late 1950s when Paul Erd\H{o}s and Alfr\'ed R\'enyi introduced the Erd\H{o}s-R\'enyi random graph. Since then many models have been developed, and the study of random graph models has become popular for real-life network modelling such as social networks and financial networks. The aim of this overview is to review relevant random graph models for real-life network modelling. Therefore, we analyse their properties in terms of styli...
September 2, 2019
In this paper we will provide an introductory understanding of random graph models, and matchings in the case of Erdos-Renyi random graphs. We will provide a synthesis of background theory to this end. We will further examine pertinent recent results and provide a basis of further exploration.
February 12, 2002
The random graph of Erdos and Renyi is one of the oldest and best studied models of a network, and possesses the considerable advantage of being exactly solvable for many of its average properties. However, as a model of real-world networks such as the Internet, social networks or biological networks it leaves a lot to be desired. In particular, it differs from real networks in two crucial ways: it lacks network clustering or transitivity, and it has an unrealistic Poissonian...
January 30, 2004
In this article we give an in depth overview of the recent advances in the field of equilibrium networks. After outlining this topic, we provide a novel way of defining equilibrium graph (network) ensembles. We illustrate this concept on the classical random graph model and then survey a large variety of recently studied network models. Next, we analyze the structural properties of the graphs in these ensembles in terms of both local and global characteristics, such as degree...
August 29, 2003
The poster presents an analytic formalism describing metric properties of undirected random graphs with arbitrary degree distributions and statistically uncorrelated (i.e. randomly connected) vertices. The formalism allows to calculate the main network characteristics like: the position of the phase transition at which a giant component first forms, the mean component size below the phase transition, the size of the giant component and the average path length above the phase ...