December 22, 2003
Similar papers 4
February 9, 2018
Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the centr...
September 25, 1998
We have measured the low-temperature transport properties of an open quantum dot formed in a clean one-dimensional channel. For the first time, at zero magnetic field, continuous and periodic oscillations superimposed upon ballistic conductance steps are observed when the conductance through the dot $G$ exceeds $2e^2/h$. We ascribe the observed conductance oscillations to evidence for Coulomb charging effects in an open dot. This is supported by the evolution of the oscillati...
April 21, 2024
Fano resonance is believed to arise when a direct path interferes with a resonant path. We demonstrate that this is not true for chiral electronic transmission without additional direct paths. To address the Fano effect in chiral electronic transport, we suggest an electronic Mach-Zehnder-Fano interferometer (MZFI), which combines a quantum dot with an electronic Mach-Zehnder interferometer. Backscattering is completely suppressed in chiral electronic transport, yielding perf...
December 3, 2020
We theoretically examine the transport through an Aharonov-Bohm ring with an embedded quantum dot (QD), the so-called QD interferometer, to address two controversial issues regarding the shape of the Coulomb peaks and measurement of the transmission phase shift through a QD. We extend a previous model [B. R. Bulka and P. Stefanski, Phys. Rev. Lett. 86, 5128 (2001); W. Hofstetter, J. Konig, and H. Schoeller, ibid. 87, 156803 (2001)] to consider multiple conduction channels in ...
November 23, 2002
The effect of the signs in the tunneling matrix elements on the transmission zeros and the transmission phase in transport through a quantum dot is studied. The existence of the transmission zeros is determined by both the relative signs and the strength of the tunneling matrix elements for two neighboring energy levels of a dot. The experimentally observed oscillating behavior of the transmission phase over several Coulomb peaks can be explained by the uniform distribution o...
July 25, 2002
We consider transport through quantum dots with two tunneling paths. Interference between paths gives rise to Fano resonances exhibiting Kondo-like physics. In studying such quantum dots, we employ a generalized Anderson model which we argue to be integrable. The exact solution is non-perturbative in the tunneling strengths of both paths. By exploiting this integrability, we compute the zero temperature linear response conductance of the dot and so obtain reasonable quantitat...
July 25, 2010
The current-voltage characteristics through a metallic quantum dot which is well coupled to a metallic lead are measured. It is shown that the I-V curves are composed of two contributions. One is a suppression of the tunneling conductivity at the Fermi level and the second is an oscillating feature which shifts with gate voltage. The results indicate that Zero-Bias-Anomaly and Coulomb Blockade phenomena coexist in an asymmetric strongly coupled quantum dot.
April 4, 2010
We analyze a quantum dot strongly coupled to the conducting leads via quantum point contacts - Fano regime of transport - and report a variety of resonant states which demonstrate the dominance of the interacting resonances in the scattering process in a low confining potential. There are resonant states similar to the eigenstates of the isolated dot, whose widths increase with increasing the coupling strength to the environment, and hybrid resonant states. The last ones are ...
April 28, 2010
We study the interference between the Fano and Kondo effects in a side-coupled double-quantum- dot system where one of the quantum dots couples to conduction electron bath while the other dot only side-couples to the first dot via antiferromagnetic (AF) spin exchange coupling. We apply both the perturbative renormalization group (RG) and numerical renormalization group (NRG) approaches to study the effect of AF coupling on the Fano lineshape in the conduction leads. With part...
November 21, 2006
We report our studies of zero-frequency shot noise in tunneling through a parallel-coupled quantum dot interferometer by employing number-resolved quantum rate equations. We show that the combination of quantum interference effect between two pathways and strong Coulomb repulsion could result in a giant Fano factor, which is controllable by tuning the enclosed magnetic flux.