January 22, 2004
Similar papers 4
February 12, 2016
In this work we include electron-electron interaction beyond Hartree-Fock level in our non-equilibrium Green's function approach by a crude form of GW through the Single Plasmon Pole Approximation. This is achieved by treating all conduction band electrons as a single effective band screening the Coulomb potential. We describe the corresponding self-energies in this scheme for a multi-subband system. In order to apply the formalism to heterostructures we discuss the screening...
October 2, 2015
Femtosecond X-ray irradiation of solids excites energetic photoelectrons that thermalize on a timescale of a few hundred femtoseconds. The thermalized electrons exchange energy with the lattice and heat it up. Experiments with X-ray free-electron lasers have unveiled so far the details of the electronic thermalization. In this work we show that the data on transient optical reflectivity measured in GaAs irradiated with femtosecond X-ray pulses can be used to follow electron-l...
January 25, 2016
Although the GW approximation is recognized as one of the most accurate theories for predicting materials excited states properties, scaling up conventional GW calculations for large systems remains a major challenge. We present a powerful and simple-to-implement method that can drastically accelerate fully converged GW calculations for large systems. We demonstrate the performance of this new method by calculating the quasiparticle band gap of MgO supercells. A speed-up fact...
April 10, 2014
We have developed the quasiparticle self-consistent GW (QSGW) method based on a recently developed mixed basis all-electron full-potential method (the PMT method), which uses the augmented plane waves (APWs) and the highly localized muffin-tin orbitals (MTOs) simultaneously. We call this PMT-QSGW. Because of the two kinds of augmented bases, we have efficient description of one-particle eigenfunctions in materials with small number of basis functions. In QSGW, we have to trea...
January 20, 1995
Electron-hole excitations in the surface bands of GaAs(110) are analyzed using constrained density-functional theory calculations. The results show that Frenkel-type autolocalized excitons are formed. The excitons induce a local surface unrelaxation which results in a strong exciton-exciton attraction and makes complexes of two or three electron-hole pairs more favorable than separate excitons. In such microscopic exciton "droplets" the electron density is mainly co...
September 24, 2006
We report the first quasiparticle calculations of the newly observed wurtzite polymorph of InAs and GaAs. The calculations are performed in the GW approximation using plane waves and pseudopotentials. For comparison we also report the study of the zinc-blende phase within the same approximations. In the InAs compound the In 4d electrons play a very important role: whether they are frozen in the core or not, leads either to a correct or a wrong band ordering (negative gap) wit...
February 16, 2005
We report quasiparticle-energy calculations of the electronic bandstructure as measured by valence-band photoemission for selected II-VI compounds and group-III-nitrides. By applying GW as perturbation to the ground state of the fictitious, non-interacting Kohn-Sham electrons of density-functional theory (DFT) we systematically study the electronic structure of zinc-blende GaN, ZnO, ZnS and CdS. Special emphasis is put on analysing the role played by the cation semicore d-ele...
September 12, 2013
In general, there are two major factors affecting bandgaps in nanostructures: (i) the enhanced electron-electron interactions due to confinement and (ii) the modified self-energy of electrons due to the dielectric screening. While recent theoretical studies on graphene nanoribbons (GNRs) report on the first effect, the effect of dielectric screening from the surrounding materials such as substrates has not been thoroughly investigated. Using large-scale electronic structure c...
August 24, 2021
The quasiparticle band-gap renormalization induced by the doped carriers is an important and well-known feature in two-dimensional semiconductors, including transition-metal dichalcogenides (TMDs), and it is of both theoretical and practical interest. To get a quantitative understanding of this effect, here we calculate the quasiparticle band-gap renormalization of the electron-doped monolayer MoS$_2$, a prototypical member of TMDs. The many-body electron-electron interaction...
June 26, 2002
The good performance of the GW approximation for band-structure calculations in solids was long taken as a sign that the sum of self-energy diagrams is converged and that all omitted terms are small. However, with modern computational resources it has now become possible to evaluate self-consistency and vertex corrections explicitly, and the numerical results show that they are, in general, not individually negligible. In this review the available data is examined, and the im...