September 17, 2009
In this paper, the Coulomb-induced changes of Fano interference in electronic transport through a double quantum dot Aharonov-Bohm ring are discussed. It is found that the Coulomb interaction in the quantum dot in the reference channel can remarkably modify the Fano interference, including the increase or decrease of the symmetry of the Fano lineshape, as well as the inversion of the Fano lineshape, which is dependent on the appropriate strength of the Coulomb interaction. %B...
February 9, 2018
Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the centr...
December 10, 2009
We investigate low-temperature transport characteristics of a side-coupled double quantum dot where only one of the dots is directly connected to the leads. We observe Fano resonances, which arise from interference between discrete levels in one dot and the Kondo effect, or cotunneling in general, in the other dot, playing the role of a continuum. The Kondo resonance is partially suppressed by destructive Fano interference, reflecting novel Fano-Kondo competition. We also pre...
February 24, 2025
We propose a nanoscale device consisting of a double quantum dot with a full exchange and pair hopping interaction. In this design, the current can only flow through the upper dot, but is sensitive to the spin state of the lower dot. The system is immersed in a highly inhomogeneous magnetic field, and only the bottom dot feels a substantial magnetic field, while the top dot experiences only a residual one. We show that our device exhibits very interesting magnetic field-dep...
February 2, 2001
We discuss a new entangled state that has been observed in the conduction across a quantum dot. At Coulomb blockade, electrons from the contacts correlate strongly to those localized in the dot, due to cotunneling processes. Because of the strong Coulomb repulsion on the dot, its electron number is unchanged w.r.to the dot in isolation, but the total spin is fully or partly compensated. In a dot with N=even at the singlet-triplet crossing, which occurs in large magnetic field...
February 7, 2006
We study transport through a strongly correlated quantum dot and show that Coulomb blockade can appear even in the presence of perfect contacts. This conclusion arises from numerical calculations of the conductance for a microscopic model of spinless fermions in an interacting chain connected to each lead via a completely open channel. The dependence of the conductance on the gate voltage shows well defined Coulomb blockade peaks which are sharpened as the interaction strengt...
January 9, 1997
We have measured the low-temperature transport properties of a quantum dot formed in a one-dimensional channel. In zero magnetic field this device shows quantized ballistic conductance plateaus with resonant tunneling peaks in each transition region between plateaus. Studies of this structure as a function of applied perpendicular magnetic field and source-drain bias indicate that resonant structure deriving from tightly bound states is split by Coulomb charging at zero magne...
January 1, 2007
We have studied the Fano effect in a few-electron quantum dot side-coupled to a quantum wire. The conductance of the wire, which shows an ordinal staircase-like quantization without the dot, is modified through the interference (the Fano effect) and the charging effects. These effects are utilized to verify the exhaustion of electrons in the dot. The "addition energy spectrum" of the dot shows a shell structure, indicating that the electron confinement potential is fairly cir...
January 22, 2001
We propose that two-channel orbital Kondo ``spin'' 1/2 conductance can be measured in a quantum dot at Coulomb Blockade with an odd number of electrons with contacts in a pillar configuration, if an orthogonal magnetic field induces an appropriate level crossing. At the zero-temperature strong coupling fixed point the conductance reaches the unitarity limit with a non-Fermi liquid sqrt(T)-law.
April 27, 2004
We derive a closed expression for the finite-temperature conductance of a Coulomb-blockade quantum dot in the presence of an exchange interaction and a parallel magnetic field. Parallel-field dependence of Coulomb-blockade peak position has been used to determine experimentally the ground-state spin of quantum dots. We find that for a realistic value of the exchange interaction, the peak motion can be significantly affected at temperatures as low as kT ~ 0.1 Delta, with Delta...