January 28, 2004
Similar papers 2
September 10, 2023
A key concept in quantum thermodynamics is extractable work, which specifies the maximum amount of work that can be extracted from a quantum system. Different quantities are used to measure extractable work, the most prevalent of which are ergotropy and the difference between the non-equilibrium and equilibrium quantum free energy. Using the former, we investigate the evolution of extractable work when an open quantum system goes through a general quantum process described by...
June 15, 2023
Entanglement entropy is one of the most prominent measures in quantum physics. We show that it has an interesting ergotropic interpretation in terms of unitarily extracted work. It determines how much energy one can extract from a source of pure unknown states by applying unitary operations when only local measurements can be performed to characterize this source. Additionally, entanglement entropy sets a limit on the minimal temperature to which these partially characterized...
September 22, 2022
Energy extraction is a central task in thermodynamics. In quantum physics, ergotropy measures the amount of work extractable under cyclic Hamiltonian control. As its full extraction requires perfect knowledge of the initial state, however, it does not characterize the work value of unknown or untrusted quantum sources. Fully characterizing such sources would require quantum tomography, which is prohibitively costly in experiments due to the exponential growth of required meas...
May 12, 2016
The paradigm of extracting work from isolated quantum system through a cyclic Hamiltonian process is a topic of immense research interest. The optimal work extracted under such process is termed as ergotropy [Europhys. Lett., 67 (4), 565(2004)]. Here, in a multi-party scenario we consider only a class of such cyclic processes that can be implemented locally, giving rise to the concept of local ergotropy. Eventually, presence of quantum correlations result in a non-vanishing t...
July 29, 2014
Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work we study how to use correlations among quantum systems to optimally store work. We analyse this question for isolated quantum ensembles, where the work can be naturally divided into two contributions: a local contribution from each system, and a global contribution originating from correlations among systems. We focus on the latter and consider quantum sy...
July 30, 2024
Maximum quantum work extraction is generally defined in terms of the ergotropy functional, no matter how experimentally complicated is the implementation of the optimal unitary allowing for it, especially in the case of multipartite systems. In this framework, we consider a quantum battery made up of many interacting sub-systems and study the maximum extractable work via concurrent local unitary operations on each subsystem. We call the resulting functional parallel ergotropy...
March 14, 2017
We revisit the problem of work extraction from a system in contact with a heat bath to a work storage system, and the reverse problem of state formation from a thermal system state in single-shot quantum thermodynamics. A physically intuitive and mathematically simple approach using only elementary majorization theory and matrix analysis is developed, and a graphical interpretation of the maximum extractable work, minimum work cost of formation, and corresponding single-shot ...
July 5, 2021
Work extraction protocol is always a significant issue in the context of quantum batteries, in which the notion of ergotropy is used to quantify a particular amount of energy that can be extracted through unitary processes. Given the total amount of energy stored in a quantum system, quantifying wasted energy after the ergotropy extraction is a question to be considered when undesired coupling with thermal reservoirs is taken into account. In this paper, we show that some amo...
May 8, 2000
In quantum systems which satisfy the hypothesis of equal weights for eigenstates [4], the maximum work principle (for extremely slow and relatively fast operation) is derived by using quantum dynamics alone. This may be a crucial step in establishing a firm connection between macroscopic thermodynamics and microscopic quantum dynamics. For special models introduced in [4,5], the derivation of the maximum work principle can be executed without introducing any unproved assumpti...
November 24, 2023
Work extraction in quantum finite systems is an important issue in quantum thermodynamics. The optimal work extracted is called ergotropy, and it is achieved by maximizing the average work extracted over all the unitary cycles. However, an agent that is non-neutral to risk should extract work by following the expected utility hypothesis. Thus, we investigate the optimal work extraction performed by a risk non-neutral agent by maximizing the average utility function over all t...