January 30, 2004
Similar papers 2
April 27, 2007
The science of complex networks is a new interdisciplinary branch of science which has arisen recently on the interface of physics, biology, social and computer sciences, and others. Its main goal is to discover general laws governing the creation and growth as well as processes taking place on networks, like e.g. the Internet, transportation or neural networks. It turned out that most real-world networks cannot be simply reduced to a compound of some individual components. F...
June 30, 2006
Real-world social and economic networks typically display a number of particular topological properties, such as a giant connected component, a broad degree distribution, the small-world property and the presence of communities of densely interconnected nodes. Several models, including ensembles of networks also known in social science as Exponential Random Graphs, have been proposed with the aim of reproducing each of these properties in isolation. Here we define a generaliz...
February 14, 2013
In statistical physics any given system can be either at an equilibrium or away from it. Networks are not an exception. Most network models can be classified as either equilibrium or growing. Here we show that under certain conditions there exists an equilibrium formulation for any growing network model, and vice versa. The equivalence between the equilibrium and nonequilibrium formulations is exact not only asymptotically, but even for any finite system size. The required co...
August 12, 2009
We study the tailoring of structured random graph ensembles to real networks, with the objective of generating precise and practical mathematical tools for quantifying and comparing network topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can produce graphs with any prescribed degree distribution and any degree-degree correlation function, its control parameters can be calculated fully analytically, and as a result we can calculate (a...
February 20, 2008
In this paper we generalize the concept of random networks to describe networks with non trivial features by a statistical mechanics approach. This framework is able to describe ensembles of undirected, directed as well as weighted networks. These networks might have not trivial community structure or, in the case of networks embedded in a given space, non trivial distance dependence of the link probability. These ensembles are characterized by their entropy which evaluate th...
October 27, 2001
The problem of defining a statistical ensemble of random graphs with an arbitrary connectivity distribution is discussed. Introducing such an ensemble is a step towards uderstanding the geometry of wide classes of graphs independently of any specific model. This research was triggered by the recent interest in the so-called scale-free networks.
November 16, 2013
We describe an ensemble of growing scale-free networks in an equilibrium framework, providing insight into why the exponent of empirical scale-free networks in nature is typically robust. In an analogy to thermostatistics, to describe the canonical and microcanonical ensembles, we introduce a functional, whose maximum corresponds to a scale-free configuration. We then identify the equivalents to energy, Zeroth-law, entropy and heat capacity for scale-free networks. Discussing...
July 29, 2017
We propose a statistical mechanics approach to a coevolving spin system with an adaptive network of interactions. The dynamics of node states and network connections is driven by both spin configuration and network topology. We consider a Hamiltonian that merges the classical Ising model and the statistical theory of correlated random networks. As a result, we obtain rich phase diagrams with different phase transitions both in the state of nodes and in the graph topology. We ...
August 11, 2020
Network equilibrium models represent a versatile tool for the analysis of interconnected objects and their relationships. They have been widely employed in both science and engineering to study the behavior of complex systems under various conditions, including external perturbations and damage. In this paper, network equilibrium models are revisited through graph-theory laws and attributes with special focus on systems that can sustain equilibrium in the absence of external ...
July 28, 2005
Based on a rigorous extension of classical statistical mechanics to networks, we study a specific microscopic network Hamiltonian. The form of this Hamiltonian is derived from the assumption that individual nodes increase/decrease their utility by linking to nodes with a higher/lower degree than their own. We interpret utility as an equivalent to energy in physical systems and discuss the temperature dependence of the emerging networks. We observe the existence of a critical ...