March 15, 2023
Today, people use email services such as Gmail, Outlook, AOL Mail, etc. to communicate with each other as quickly as possible to send information and official letters. Spam or junk mail is a major challenge to this type of communication, usually sent by botnets with the aim of advertising, harming and stealing information in bulk to different people. Receiving unwanted spam emails on a daily basis fills up the inbox folder. Therefore, spam detection is a fundamental challenge...
April 30, 2013
To date, most studies on spam have focused only on the spamming phase of the spam cycle and have ignored the harvesting phase, which consists of the mass acquisition of email addresses. It has been observed that spammers conceal their identity to a lesser degree in the harvesting phase, so it may be possible to gain new insights into spammers' behavior by studying the behavior of harvesters, which are individuals or bots that collect email addresses. In this paper, we reveal ...
December 27, 2020
The popularity, cost-effectiveness and ease of information exchange that electronic mails offer to electronic device users has been plagued with the rising number of unsolicited or spam emails. Driven by the need to protect email users from this growing menace, research in spam email filtering/detection systems has being increasingly active in the last decade. However, the adaptive nature of spam emails has often rendered most of these systems ineffective. While several spam ...
October 24, 2014
One of the ways in which attackers try to steal sensitive information from corporations is by sending spearphishing emails. This type of emails typically appear to be sent by one of the victim's coworkers, but have instead been crafted by an attacker. A particularly insidious type of spearphishing emails are the ones that do not only claim to come from a trusted party, but were actually sent from that party's legitimate email account that was compromised in the first place. I...
December 16, 2024
Phishing attacks on enterprise employees present one of the most costly and potent threats to organizations. We explore an understudied facet of enterprise phishing attacks: the email relay infrastructure behind successfully delivered phishing emails. We draw on a dataset spanning one year across thousands of enterprises, billions of emails, and over 800,000 delivered phishing attacks. Our work sheds light on the network origins of phishing emails received by real-world enter...
May 4, 2004
Spam, also known as Unsolicited Commercial Email (UCE), is the bane of email communication. Many data mining researchers have addressed the problem of detecting spam, generally by treating it as a static text classification problem. True in vivo spam filtering has characteristics that make it a rich and challenging domain for data mining. Indeed, real-world datasets with these characteristics are typically difficult to acquire and to share. This paper demonstrates some of the...
April 28, 2016
Spammer detection on social network is a challenging problem. The rigid anti-spam rules have resulted in emergence of "smart" spammers. They resemble legitimate users who are difficult to identify. In this paper, we present a novel spammer classification approach based on Latent Dirichlet Allocation(LDA), a topic model. Our approach extracts both the local and the global information of topic distribution patterns, which capture the essence of spamming. Tested on one benchmark...
August 28, 2012
Unsolicited Bulk Emails (also known as Spam) are undesirable emails sent to massive number of users. Spam emails consume the network resources and cause lots of security uncertainties. As we studied, the location where the spam filter operates in is an important parameter to preserve network resources. Although there are many different methods to block spam emails, most of program developers only intend to block spam emails from being delivered to their clients. In this paper...
July 27, 2024
The objective of the research was to analyze e-mails exchanged at Enron, a power company that declared bankruptcy in 2001 following an investigation into unethical operations regarding their financials. Like other researchers, we identify the most important employees and detect communities using network science methods. We find that the importance of a person depends on the centrality measure used; while the communities we detected resembled the formal organizational structur...
September 18, 2000
We investigate the performance of two machine learning algorithms in the context of anti-spam filtering. The increasing volume of unsolicited bulk e-mail (spam) has generated a need for reliable anti-spam filters. Filters of this type have so far been based mostly on keyword patterns that are constructed by hand and perform poorly. The Naive Bayesian classifier has recently been suggested as an effective method to construct automatically anti-spam filters with superior perfor...