February 17, 2004
Similar papers 3
September 11, 2012
We show that the simple update approach proposed by Jiang et. al. [H.C. Jiang, Z.Y. Weng, and T. Xiang, Phys. Rev. Lett. 101, 090603 (2008)] is an efficient and accurate method for determining the infinite tree tensor network states on the Bethe lattice. Ground state properties of the quantum transverse Ising model and the Heisenberg XXZ model on the Bethe lattice are studied. The transverse Ising model is found to undergo a second-order quantum phase transition with a diverg...
July 4, 2002
We study spin glasses on random lattices with finite connectivity. In the infinite connectivity limit they reduce to the Sherrington Kirkpatrick model. In this paper we investigate the expansion around the high connectivity limit. Within the replica symmetry breaking scheme at two steps, we compute the free energy at the first order in the expansion in inverse powers of the average connectivity (z), both for the fixed connectivity and for the fluctuating connectivity random l...
September 14, 2005
The Glauber dynamics of disordered spin models with multi-spin interactions on sparse random graphs (Bethe lattices) is investigated. Such models undergo a dynamical glass transition upon decreasing the temperature or increasing the degree of constrainedness. Our analysis is based upon a detailed study of large scale rearrangements which control the slow dynamics of the system close to the dynamical transition. Particular attention is devoted to the neighborhood of a zero tem...
June 21, 2022
We study magnetic polymers, defined as self-avoiding walks where each monomer $i$ carries a "spin'' $s_i$ and interacts with its first neighbor monomers, let us say $j$, via a coupling constant $J(s_i,s_j)$. Ising-like [$s_i = \pm 1$, with $J(s_i,s_j) = \varepsilon s_i s_j$] and Potts-like [$s_i = 1,\ldots,q$, with $J(s_i,s_j)=\varepsilon_{s_i} \delta(s_i,s_j)$] models are investigated. Some particular cases of these systems have recently been studied in the continuum and on ...
September 2, 1998
Within the Bethe- Peierls method the for short- ranged Ising spin glass, recently formulated by Serva and Paladin, the equation for the spin glass parameter function near the transition to the paramagnetic phase has been carried out. The form of this equation is qualitatively similar to that for Sherrington- Kirpatrick model, but quantitatively the order parametr function depends of the dimension d of the system. In the case d tends to infinity one obtains well known Parisi s...
July 14, 2021
A growing body of evidence indicates that the sluggish low-temperature dynamics of glass formers (e.g. supercooled liquids, colloids or spin glasses) is due to a growing correlation length. Which is the effective field theory that describes these correlations? The natural field theory was drastically simplified by Bray and Roberts in 1980. More than forty years later, we confirm the tenets of Bray and Roberts theory by studying the Ising spin glass in an externally applied ma...
January 9, 2025
We give a short non-technical introduction to the Ising model, and review some successes as well as challenges which have emerged from its study in probability and mathematical physics. This includes the infinite-volume theory of phase transitions, and ideas like scaling, renormalization group, universality, SLE, and random symmetry breaking in disordered systems and networks. This note is based on a talk given on 15 August 2024, as part of the Ising lecture during the 11th B...
September 17, 2016
Bethe lattice spins glasses are supposed to be marginally stable, i.e. their equilibrium probability distribution changes discontinuously when we add an external perturbation. So far the problem of a spin glass on a Bethe lattice has been studied only using an approximation where marginally stability is not present, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving a marginally stable solution have been confined to some pertu...
June 21, 2016
We investigate the ground-state properties of a disorderd Ising model with uniform transverse field on the Bethe lattice, focusing on the quantum phase transition from a paramagnetic to a glassy phase that is induced by reducing the intensity of the transverse field. We use a combination of quantum Monte Carlo algorithms and exact diagonalization to compute R\'enyi entropies, quantum Fisher information, correlation functions and order parameter. We locate the transition by me...
May 16, 2014
We consider the problem of predicting the spin states in a kinetic Ising model when spin trajectories are observed for only a finite fraction of sites. In a Bayesian setting, where the probabilistic model of the spin dynamics is assumed to be known, the optimal prediction can be computed from the conditional (posterior) distribution of unobserved spins given the observed ones. Using the replica method, we compute the error of the Bayes optimal predictor for parallel discrete ...